EconPapers    
Economics at your fingertips  
 

Sound-driven single-electron transfer in a circuit of coupled quantum rails

Shintaro Takada, Hermann Edlbauer, Hugo V. Lepage, Junliang Wang, Pierre-André Mortemousque, Giorgos Georgiou, Crispin H. W. Barnes, Christopher J. B. Ford, Mingyun Yuan, Paulo V. Santos, Xavier Waintal, Arne Ludwig, Andreas D. Wieck, Matias Urdampilleta, Tristan Meunier and Christopher Bäuerle ()
Additional contact information
Shintaro Takada: Université Grenoble Alpes, CNRS, Institut Néel
Hermann Edlbauer: Université Grenoble Alpes, CNRS, Institut Néel
Hugo V. Lepage: University of Cambridge
Junliang Wang: Université Grenoble Alpes, CNRS, Institut Néel
Pierre-André Mortemousque: Université Grenoble Alpes, CNRS, Institut Néel
Giorgos Georgiou: Université Grenoble Alpes, CNRS, Institut Néel
Crispin H. W. Barnes: University of Cambridge
Christopher J. B. Ford: University of Cambridge
Mingyun Yuan: Paul-Drude-Institut für Festkörperelektronik
Paulo V. Santos: Paul-Drude-Institut für Festkörperelektronik
Xavier Waintal: Université Grenoble Alpes, CEA, IRIG-Pheliqs
Arne Ludwig: Ruhr-Universität Bochum, Universitätsstraße 150
Andreas D. Wieck: Ruhr-Universität Bochum, Universitätsstraße 150
Matias Urdampilleta: Université Grenoble Alpes, CNRS, Institut Néel
Tristan Meunier: Université Grenoble Alpes, CNRS, Institut Néel
Christopher Bäuerle: Université Grenoble Alpes, CNRS, Institut Néel

Nature Communications, 2019, vol. 10, issue 1, 1-9

Abstract: Abstract Surface acoustic waves (SAWs) strongly modulate the shallow electric potential in piezoelectric materials. In semiconductor heterostructures such as GaAs/AlGaAs, SAWs can thus be employed to transfer individual electrons between distant quantum dots. This transfer mechanism makes SAW technologies a promising candidate to convey quantum information through a circuit of quantum logic gates. Here we present two essential building blocks of such a SAW-driven quantum circuit. First, we implement a directional coupler allowing to partition a flying electron arbitrarily into two paths of transportation. Second, we demonstrate a triggered single-electron source enabling synchronisation of the SAW-driven sending process. Exceeding a single-shot transfer efficiency of 99%, we show that a SAW-driven integrated circuit is feasible with single electrons on a large scale. Our results pave the way to perform quantum logic operations with flying electron qubits.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-019-12514-w Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12514-w

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-019-12514-w

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12514-w