Rapid multiple-quantum three-dimensional fluorescence spectroscopy disentangles quantum pathways
Stefan Mueller,
Julian Lüttig,
Pavel Malý,
Lei Ji,
Jie Han,
Michael Moos,
Todd B. Marder,
Uwe H. F. Bunz,
Andreas Dreuw,
Christoph Lambert and
Tobias Brixner ()
Additional contact information
Stefan Mueller: Universität Würzburg, Am Hubland
Julian Lüttig: Universität Würzburg, Am Hubland
Pavel Malý: Universität Würzburg, Am Hubland
Lei Ji: Universität Würzburg, Am Hubland
Jie Han: Ruprecht-Karls-Universität Heidelberg
Michael Moos: Universität Würzburg, Am Hubland
Todd B. Marder: Universität Würzburg, Am Hubland
Uwe H. F. Bunz: Ruprecht-Karls-Universität Heidelberg
Andreas Dreuw: Ruprecht-Karls-Universität Heidelberg
Christoph Lambert: Universität Würzburg, Am Hubland
Tobias Brixner: Universität Würzburg, Am Hubland
Nature Communications, 2019, vol. 10, issue 1, 1-11
Abstract:
Abstract Coherent two-dimensional spectroscopy is a powerful tool for probing ultrafast quantum dynamics in complex systems. Several variants offer different types of information but typically require distinct beam geometries. Here we introduce population-based three-dimensional (3D) electronic spectroscopy and demonstrate the extraction of all fourth- and multiple sixth-order nonlinear signal contributions by employing 125-fold (1⨯5⨯5⨯5) phase cycling of a four-pulse sequence. Utilizing fluorescence detection and shot-to-shot pulse shaping in single-beam geometry, we obtain various 3D spectra of the dianion of TIPS-tetraazapentacene, a fluorophore with limited stability at ambient conditions. From this, we recover previously unknown characteristics of its electronic two-photon state. Rephasing and nonrephasing sixth-order contributions are measured without additional phasing that hampered previous attempts using noncollinear geometries. We systematically resolve all nonlinear signals from the same dataset that can be acquired in 8 min. The approach is generalizable to other incoherent observables such as external photoelectrons, photocurrents, or photoions.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-019-12602-x Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12602-x
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-019-12602-x
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().