EconPapers    
Economics at your fingertips  
 

Modification of boron nitride nanocages by titanium doping results unexpectedly in exohedral complexes

Ruyi Li and Yang Wang ()
Additional contact information
Ruyi Li: Yangzhou University
Yang Wang: Yangzhou University

Nature Communications, 2019, vol. 10, issue 1, 1-8

Abstract: Abstract Despite their early experimental production and observation, the unambiguous molecular structures of metal-containing boron nitride (BN) nanocages still remain mysterious. It has been commonly assumed that this family of compounds has the metal atom confined inside the cage, just like their isoelectronic cousins, carbon metallofullerenes do. Here, we demonstrate that Ti(BN)n ($$n$$n = 12–24) complexes have, unexpectedly, an exohedral structure instead of an endohedral one, which could be verified by collision-induced dissociation experiments. The predicted global minimum structures exhibit some common bonding features accounting for their high stability, and could be readily synthesized under typical conditions for generating BN nanoclusters. The Ti doping dramatically changes not only the cage topology, but the arrangement of B and N atoms, endowing the resultant compounds with potential for $${\mathrm{CO}}_{2}$$CO2 capture and nitrogen fixation. These findings may expand or alter the understanding of BN nanostructures functionalized with other transition metals.

Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-019-12877-0 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12877-0

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-019-12877-0

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12877-0