Formation and current-induced motion of synthetic antiferromagnetic skyrmion bubbles
Takaaki Dohi,
Samik DuttaGupta,
Shunsuke Fukami () and
Hideo Ohno
Additional contact information
Takaaki Dohi: Tohoku University
Samik DuttaGupta: Tohoku University
Shunsuke Fukami: Tohoku University
Hideo Ohno: Tohoku University
Nature Communications, 2019, vol. 10, issue 1, 1-6
Abstract:
Abstract Skyrmion, a topologically-protected soliton, is known to emerge via electron spin in various magnetic materials. The magnetic skyrmion can be driven by low current density and has a potential to be stabilized in nanoscale, offering new directions of spintronics. However, there remain some fundamental issues in widely-studied ferromagnetic systems, which include a difficulty to realize stable ultrasmall skyrmions at room temperature, presence of the skyrmion Hall effect, and limitation of velocity owing to the topological charge. Here we show skyrmion bubbles in a synthetic antiferromagnetic coupled multilayer that are free from the above issues. Additive Dzyaloshinskii-Moriya interaction and spin-orbit torque (SOT) of the tailored stack allow stable skyrmion bubbles at room temperature, significantly smaller threshold current density or higher speed for motion, and negligible skyrmion Hall effect, with a potential to be scaled down to nanometer dimensions. The results offer a promising pathway toward nanoscale and energy-efficient skyrmion-based devices.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
https://www.nature.com/articles/s41467-019-13182-6 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13182-6
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-019-13182-6
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().