EconPapers    
Economics at your fingertips  
 

Observation of quantum many-body effects due to zero point fluctuations in superconducting circuits

Sébastien Léger, Javier Puertas-Martínez, Karthik Bharadwaj, Rémy Dassonneville, Jovian Delaforce, Farshad Foroughi, Vladimir Milchakov, Luca Planat, Olivier Buisson, Cécile Naud, Wiebke Hasch-Guichard, Serge Florens, Izak Snyman and Nicolas Roch ()
Additional contact information
Sébastien Léger: Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel
Javier Puertas-Martínez: Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel
Karthik Bharadwaj: Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel
Rémy Dassonneville: Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel
Jovian Delaforce: Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel
Farshad Foroughi: Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel
Vladimir Milchakov: Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel
Luca Planat: Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel
Olivier Buisson: Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel
Cécile Naud: Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel
Wiebke Hasch-Guichard: Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel
Serge Florens: Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel
Izak Snyman: University of the Witwatersrand
Nicolas Roch: Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel

Nature Communications, 2019, vol. 10, issue 1, 1-8

Abstract: Abstract Electromagnetic fields possess zero point fluctuations which lead to observable effects such as the Lamb shift and the Casimir effect. In the traditional quantum optics domain, these corrections remain perturbative due to the smallness of the fine structure constant. To provide a direct observation of non-perturbative effects driven by zero point fluctuations in an open quantum system we wire a highly non-linear Josephson junction to a high impedance transmission line, allowing large phase fluctuations across the junction. Consequently, the resonance of the former acquires a relative frequency shift that is orders of magnitude larger than for natural atoms. Detailed modeling confirms that this renormalization is non-linear and quantum. Remarkably, the junction transfers its non-linearity to about thirty environmental modes, a striking back-action effect that transcends the standard Caldeira-Leggett paradigm. This work opens many exciting prospects for longstanding quests such as the tailoring of many-body Hamiltonians in the strongly non-linear regime, the observation of Bloch oscillations, or the development of high-impedance qubits.

Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-019-13199-x Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13199-x

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-019-13199-x

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13199-x