EconPapers    
Economics at your fingertips  
 

Cytoplasmic glycoengineering enables biosynthesis of nanoscale glycoprotein assemblies

Hanne L. P. Tytgat, Chia-wei Lin, Mikail D. Levasseur, Markus B. Tomek, Christoph Rutschmann, Jacqueline Mock, Nora Liebscher, Naohiro Terasaka, Yusuke Azuma, Michael Wetter, Martin F. Bachmann, Donald Hilvert, Markus Aebi and Timothy G. Keys ()
Additional contact information
Hanne L. P. Tytgat: ETH Zurich
Chia-wei Lin: ETH Zurich
Mikail D. Levasseur: ETH Zurich
Markus B. Tomek: ETH Zurich
Christoph Rutschmann: ETH Zurich
Jacqueline Mock: ETH Zurich
Nora Liebscher: ETH Zurich
Naohiro Terasaka: ETH Zurich
Yusuke Azuma: ETH Zurich
Michael Wetter: ETH Zurich
Martin F. Bachmann: University of Bern
Donald Hilvert: ETH Zurich
Markus Aebi: ETH Zurich
Timothy G. Keys: ETH Zurich

Nature Communications, 2019, vol. 10, issue 1, 1-10

Abstract: Abstract Glycosylation of proteins profoundly impacts their physical and biological properties. Yet our ability to engineer novel glycoprotein structures remains limited. Established bacterial glycoengineering platforms require secretion of the acceptor protein to the periplasmic space and preassembly of the oligosaccharide substrate as a lipid-linked precursor, limiting access to protein and glycan substrates respectively. Here, we circumvent these bottlenecks by developing a facile glycoengineering platform that operates in the bacterial cytoplasm. The Glycoli platform leverages a recently discovered site-specific polypeptide glycosyltransferase together with variable glycosyltransferase modules to synthesize defined glycans, of bacterial or mammalian origin, directly onto recombinant proteins in the E. coli cytoplasm. We exploit the cytoplasmic localization of this glycoengineering platform to generate a variety of multivalent glycostructures, including self-assembling nanomaterials bearing hundreds of copies of the glycan epitope. This work establishes cytoplasmic glycoengineering as a powerful platform for producing glycoprotein structures with diverse future biomedical applications.

Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-019-13283-2 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13283-2

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-019-13283-2

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13283-2