Templated dewetting of single-crystal sub-millimeter-long nanowires and on-chip silicon circuits
Monica Bollani (),
Marco Salvalaglio (),
Abdennacer Benali,
Mohammed Bouabdellaoui,
Meher Naffouti,
Mario Lodari,
Stefano Di Corato,
Alexey Fedorov,
Axel Voigt,
Ibtissem Fraj,
Luc Favre,
Jean Benoit Claude,
David Grosso,
Giuseppe Nicotra,
Antonio Mio,
Antoine Ronda,
Isabelle Berbezier and
Marco Abbarchi ()
Additional contact information
Monica Bollani: Laboratory for Nanostructure Epitaxy and Spintronics on Silicon, LNESS
Marco Salvalaglio: Technische Universität Dresden
Abdennacer Benali: Université de Toulon, CNRS
Mohammed Bouabdellaoui: Université de Toulon, CNRS
Meher Naffouti: Université de Toulon, CNRS
Mario Lodari: Laboratory for Nanostructure Epitaxy and Spintronics on Silicon, LNESS
Stefano Di Corato: Laboratory for Nanostructure Epitaxy and Spintronics on Silicon, LNESS
Alexey Fedorov: Laboratory for Nanostructure Epitaxy and Spintronics on Silicon, LNESS
Axel Voigt: Technische Universität Dresden
Ibtissem Fraj: Université de Toulon, CNRS
Luc Favre: Université de Toulon, CNRS
Jean Benoit Claude: Université de Toulon, CNRS
David Grosso: Université de Toulon, CNRS
Giuseppe Nicotra: CNR-IMM
Antonio Mio: CNR-IMM
Antoine Ronda: Université de Toulon, CNRS
Isabelle Berbezier: Université de Toulon, CNRS
Marco Abbarchi: Université de Toulon, CNRS
Nature Communications, 2019, vol. 10, issue 1, 1-10
Abstract:
Abstract Large-scale, defect-free, micro- and nano-circuits with controlled inter-connections represent the nexus between electronic and photonic components. However, their fabrication over large scales often requires demanding procedures that are hardly scalable. Here we synthesize arrays of parallel ultra-long (up to 0.75 mm), monocrystalline, silicon-based nano-wires and complex, connected circuits exploiting low-resolution etching and annealing of thin silicon films on insulator. Phase field simulations reveal that crystal faceting and stabilization of the wires against breaking is due to surface energy anisotropy. Wires splitting, inter-connections and direction are independently managed by engineering the dewetting fronts and exploiting the spontaneous formation of kinks. Finally, we fabricate field-effect transistors with state-of-the-art trans-conductance and electron mobility. Beyond the first experimental evidence of controlled dewetting of patches featuring a record aspect ratio of $$\sim$$~1/60000 and self-assembled $$\sim$$~mm long nano-wires, our method constitutes a distinct and promising approach for the deterministic implementation of atomically-smooth, mono-crystalline electronic and photonic circuits.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-019-13371-3 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13371-3
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-019-13371-3
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().