EconPapers    
Economics at your fingertips  
 

Kinetics and detectability of the bridgmanite to post-perovskite transformation in the Earth's D″ layer

Christopher Langrand, Denis Andrault, Stéphanie Durand, Zuzana Konôpková, Nadège Hilairet, Christine Thomas and Sébastien Merkel ()
Additional contact information
Christopher Langrand: Univ. Lille, CNRS, INRA, ENSCL, UMR 8207 - UMET - Unité Matériaux et Transformations
Denis Andrault: Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans
Stéphanie Durand: Institute of Geophysics, University of Münster
Zuzana Konôpková: DESY Photon Science
Nadège Hilairet: Univ. Lille, CNRS, INRA, ENSCL, UMR 8207 - UMET - Unité Matériaux et Transformations
Christine Thomas: Institute of Geophysics, University of Münster
Sébastien Merkel: Univ. Lille, CNRS, INRA, ENSCL, UMR 8207 - UMET - Unité Matériaux et Transformations

Nature Communications, 2019, vol. 10, issue 1, 1-9

Abstract: Abstract Bridgmanite, the dominant mineral in the Earth’s lower mantle, crystallizes in the perovskite structure and transforms into post-perovskite at conditions relevant for the D$${}^{{\prime\prime} }$$″ layer. This transformation affects the dynamics of the Earth’s lowermost mantle and can explain a range of seismic observations. The thickness over which the two phases coexist, however, can extend over 100 km, casting doubt on the assignment of the observed seismic boundaries. Here, experiments show that the bridgmanite to post-perovskite transition in (Mg$${}_{0.86}$$0.86,Fe$${}_{0.14}$$0.14)SiO$${}_{3}$$3 is fast on geological timescales. The transformation kinetics, however, affects reflection coefficients of $$P$$P and $$S$$S waves by more than one order of magnitude. Thick layers of coexisting bridgmanite and post-perovskite can hence be detected using seismic reflections. Morever, the detection and wave period dependence of D$${}^{{\prime\prime} }$$″ reflections can be used to constrain significant features of the Earth’s lowermost mantle, such as the thickness of the coexistence layer, and obtain information on temperature and grain sizes.

Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-019-13482-x Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13482-x

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-019-13482-x

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13482-x