EconPapers    
Economics at your fingertips  
 

A transferable machine-learning framework linking interstice distribution and plastic heterogeneity in metallic glasses

Qi Wang () and Anubhav Jain ()
Additional contact information
Qi Wang: Energy Technologies Area
Anubhav Jain: Energy Technologies Area

Nature Communications, 2019, vol. 10, issue 1, 1-11

Abstract: Abstract When metallic glasses (MGs) are subjected to mechanical loads, the plastic response of atoms is non-uniform. However, the extent and manner in which atomic environment signatures present in the undeformed structure determine this plastic heterogeneity remain elusive. Here, we demonstrate that novel site environment features that characterize interstice distributions around atoms combined with machine learning (ML) can reliably identify plastic sites in several Cu-Zr compositions. Using only quenched structural information as input, the ML-based plastic probability estimates (“quench-in softness” metric) can identify plastic sites that could activate at high strains, losing predictive power only upon the formation of shear bands. Moreover, we reveal that a quench-in softness model trained on a single composition and quench rate substantially improves upon previous models in generalizing to different compositions and completely different MG systems (Ni62Nb38, Al90Sm10 and Fe80P20). Our work presents a general, data-centric framework that could potentially be used to address the structural origin of any site-specific property in MGs.

Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-019-13511-9 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13511-9

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-019-13511-9

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13511-9