EconPapers    
Economics at your fingertips  
 

Direct observation of imploded core heating via fast electrons with super-penetration scheme

T. Gong, H. Habara (), K. Sumioka, M. Yoshimoto, Y. Hayashi, S. Kawazu, T. Otsuki, T. Matsumoto, T. Minami, K. Abe, K. Aizawa, Y. Enmei, Y. Fujita, A. Ikegami, H. Makiyama, K. Okazaki, K. Okida, T. Tsukamoto, Y. Arikawa, S. Fujioka, Y. Iwasa, S. Lee, H. Nagatomo, H. Shiraga, K. Yamanoi, M. S. Wei and K. A. Tanaka ()
Additional contact information
T. Gong: Osaka University
H. Habara: Osaka University
K. Sumioka: Osaka University
M. Yoshimoto: Osaka University
Y. Hayashi: Osaka University
S. Kawazu: Osaka University
T. Otsuki: Osaka University
T. Matsumoto: Osaka University
T. Minami: Osaka University
K. Abe: Osaka University
K. Aizawa: Osaka University
Y. Enmei: Osaka University
Y. Fujita: Osaka University
A. Ikegami: Osaka University
H. Makiyama: Osaka University
K. Okazaki: Osaka University
K. Okida: Osaka University
T. Tsukamoto: Osaka University
Y. Arikawa: Osaka University
S. Fujioka: Osaka University
Y. Iwasa: Osaka University
S. Lee: Osaka University
H. Nagatomo: Osaka University
H. Shiraga: Osaka University
K. Yamanoi: Osaka University
M. S. Wei: University of Rochester
K. A. Tanaka: Osaka University

Nature Communications, 2019, vol. 10, issue 1, 1-10

Abstract: Abstract Fast ignition (FI) is a promising approach for high-energy-gain inertial confinement fusion in the laboratory. To achieve ignition, the energy of a short-pulse laser is required to be delivered efficiently to the pre-compressed fuel core via a high-energy electron beam. Therefore, understanding the transport and energy deposition of this electron beam inside the pre-compressed core is the key for FI. Here we report on the direct observation of the electron beam transport and deposition in a compressed core through the stimulated Cu Kα emission in the super-penetration scheme. Simulations reproducing the experimental measurements indicate that, at the time of peak compression, about 1% of the short-pulse energy is coupled to a relatively low-density core with a radius of 70 μm. Analysis with the support of 2D particle-in-cell simulations uncovers the key factors improving this coupling efficiency. Our findings are of critical importance for optimizing FI experiments in a super-penetration scheme.

Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-019-13574-8 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13574-8

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-019-13574-8

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13574-8