EconPapers    
Economics at your fingertips  
 

Engineering protein assemblies with allosteric control via monomer fold-switching

Luis A. Campos, Rajendra Sharma, Sara Alvira, Federico M. Ruiz, Beatriz Ibarra-Molero, Mourad Sadqi, Carlos Alfonso, Germán Rivas, Jose M. Sanchez-Ruiz, Antonio Romero Garrido, José M. Valpuesta and Victor Muñoz ()
Additional contact information
Luis A. Campos: Centro Nacional de Biotecnología (CNB-CSIC)
Rajendra Sharma: Centro Nacional de Biotecnología (CNB-CSIC)
Sara Alvira: Centro Nacional de Biotecnología (CNB-CSIC)
Federico M. Ruiz: Centro de Investigaciones Biológicas (CIB-CSIC)
Beatriz Ibarra-Molero: Universidad de Granada
Mourad Sadqi: University of California
Carlos Alfonso: Centro de Investigaciones Biológicas (CIB-CSIC)
Germán Rivas: Centro de Investigaciones Biológicas (CIB-CSIC)
Jose M. Sanchez-Ruiz: Universidad de Granada
Antonio Romero Garrido: Centro de Investigaciones Biológicas (CIB-CSIC)
José M. Valpuesta: Centro Nacional de Biotecnología (CNB-CSIC)
Victor Muñoz: Centro Nacional de Biotecnología (CNB-CSIC)

Nature Communications, 2019, vol. 10, issue 1, 1-13

Abstract: Abstract The macromolecular machines of life use allosteric control to self-assemble, dissociate and change shape in response to signals. Despite enormous interest, the design of nanoscale allosteric assemblies has proven tremendously challenging. Here we present a proof of concept of allosteric assembly in which an engineered fold switch on the protein monomer triggers or blocks assembly. Our design is based on the hyper-stable, naturally monomeric protein CI2, a paradigm of simple two-state folding, and the toroidal arrangement with 6-fold symmetry that it only adopts in crystalline form. We engineer CI2 to enable a switch between the native and an alternate, latent fold that self-assembles onto hexagonal toroidal particles by exposing a favorable inter-monomer interface. The assembly is controlled on demand via the competing effects of temperature and a designed short peptide. These findings unveil a remarkable potential for structural metamorphosis in proteins and demonstrate key principles for engineering protein-based nanomachinery.

Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-019-13686-1 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13686-1

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-019-13686-1

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13686-1