Controllability governs the balance between Pavlovian and instrumental action selection
Hayley M. Dorfman () and
Samuel J. Gershman
Additional contact information
Hayley M. Dorfman: Department of Psychology and Center for Brain Science, Harvard University, Northwest Lab Building
Samuel J. Gershman: Department of Psychology and Center for Brain Science, Harvard University, Northwest Lab Building
Nature Communications, 2019, vol. 10, issue 1, 1-8
Abstract:
Abstract A Pavlovian bias to approach reward-predictive cues and avoid punishment-predictive cues can conflict with instrumentally-optimal actions. Here, we propose that the brain arbitrates between Pavlovian and instrumental control by inferring which is a better predictor of reward. The instrumental predictor is more flexible; it can learn values that depend on both stimuli and actions, whereas the Pavlovian predictor learns values that depend only on stimuli. The arbitration theory predicts that the Pavlovian predictor will be favored when rewards are relatively uncontrollable, because the additional flexibility of the instrumental predictor is not useful. Consistent with this hypothesis, we find that the Pavlovian approach bias is stronger under low control compared to high control contexts.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/s41467-019-13737-7 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13737-7
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-019-13737-7
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().