Modulation of Indian monsoon by water vapor and cloud feedback over the past 22,000 years
Chetankumar Jalihal (),
Jayaraman Srinivasan and
Arindam Chakraborty
Additional contact information
Chetankumar Jalihal: Indian Institute of Science
Jayaraman Srinivasan: Indian Institute of Science
Arindam Chakraborty: Indian Institute of Science
Nature Communications, 2019, vol. 10, issue 1, 1-8
Abstract:
Abstract To predict how monsoons will evolve in the 21st century, we need to understand how they have changed in the past. In paleoclimate literature, the major focus has been on the role of solar forcing on monsoons but not on the amplification by feedbacks internal to the climate system. Here we have used the results from a transient climate simulation to show that feedbacks amplify the effect of change in insolation on the Indian summer monsoon. We show that during the deglacial (22 ka to 10 ka) monsoons were predominantly influenced by rising water vapor due to increasing sea surface temperature, whereas in the Holocene (10 ka to 0 ka) cloud feedback was more important. These results are consistent with another transient simulation, thus increasing confidence despite potential model biases. We have demonstrated that insolation drives monsoon through different pathways during cold and warm periods, thereby highlighting the changing role of internal factors.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/s41467-019-13754-6 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13754-6
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-019-13754-6
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().