Ultrafast relaxation of photoexcited superfluid He nanodroplets
M. Mudrich (),
A. C. LaForge,
A. Ciavardini,
P. O’Keeffe,
C. Callegari,
M. Coreno,
A. Demidovich,
M. Devetta,
M. Di Fraia,
M. Drabbels,
P. Finetti,
O. Gessner,
C. Grazioli,
A. Hernando,
D. M. Neumark,
Y. Ovcharenko,
P. Piseri,
O. Plekan,
K. C. Prince,
R. Richter,
M. P. Ziemkiewicz,
T. Möller,
J. Eloranta,
M. Pi,
M. Barranco and
F. Stienkemeier
Additional contact information
M. Mudrich: Aarhus University
A. C. LaForge: University of Freiburg
A. Ciavardini: CNR-ISM
P. O’Keeffe: CNR-ISM
C. Callegari: Elettra – Sincrotrone Trieste S.C.p.A.
M. Coreno: CNR-ISM
A. Demidovich: Elettra – Sincrotrone Trieste S.C.p.A.
M. Devetta: Università degli Studi di Milano
M. Di Fraia: Elettra – Sincrotrone Trieste S.C.p.A.
M. Drabbels: Ecole Polytechnique Fédérale de Lausanne (EPFL)
P. Finetti: Elettra – Sincrotrone Trieste S.C.p.A.
O. Gessner: Lawrence Berkeley National Laboratory
C. Grazioli: CNR-IOM, Istituto Officina dei Materiali
A. Hernando: Kido Dynamics
D. M. Neumark: Lawrence Berkeley National Laboratory
Y. Ovcharenko: Institut für Optik und Atomare Physik
P. Piseri: Università degli Studi di Milano
O. Plekan: Elettra – Sincrotrone Trieste S.C.p.A.
K. C. Prince: Elettra – Sincrotrone Trieste S.C.p.A.
R. Richter: Elettra – Sincrotrone Trieste S.C.p.A.
M. P. Ziemkiewicz: Lawrence Berkeley National Laboratory
T. Möller: Institut für Optik und Atomare Physik
J. Eloranta: California State University at Northridge
M. Pi: Universitat de Barcelona
M. Barranco: Universitat de Barcelona
F. Stienkemeier: University of Freiburg
Nature Communications, 2020, vol. 11, issue 1, 1-7
Abstract:
Abstract The relaxation of photoexcited nanosystems is a fundamental process of light–matter interaction. Depending on the couplings of the internal degrees of freedom, relaxation can be ultrafast, converting electronic energy in a few fs, or slow, if the energy is trapped in a metastable state that decouples from its environment. Here, we study helium nanodroplets excited resonantly by femtosecond extreme-ultraviolet (XUV) pulses from a seeded free-electron laser. Despite their superfluid nature, we find that helium nanodroplets in the lowest electronically excited states undergo ultrafast relaxation. By comparing experimental photoelectron spectra with time-dependent density functional theory simulations, we unravel the full relaxation pathway: Following an ultrafast interband transition, a void nanometer-sized bubble forms around the localized excitation (He$${}^{* }$$*) within 1 ps. Subsequently, the bubble collapses and releases metastable He$${}^{* }$$* at the droplet surface. This study highlights the high level of detail achievable in probing the photodynamics of nanosystems using tunable XUV pulses.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-019-13681-6 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-13681-6
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-019-13681-6
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().