EconPapers    
Economics at your fingertips  
 

Accurate quantification of circular RNAs identifies extensive circular isoform switching events

Jinyang Zhang, Shuai Chen, Jingwen Yang and Fangqing Zhao ()
Additional contact information
Jinyang Zhang: Chinese Academy of Sciences
Shuai Chen: Chinese Academy of Sciences
Jingwen Yang: Chinese Academy of Sciences
Fangqing Zhao: Chinese Academy of Sciences

Nature Communications, 2020, vol. 11, issue 1, 1-14

Abstract: Abstract Detection and quantification of circular RNAs (circRNAs) face several significant challenges, including high false discovery rate, uneven rRNA depletion and RNase R treatment efficiency, and underestimation of back-spliced junction reads. Here, we propose a novel algorithm, CIRIquant, for accurate circRNA quantification and differential expression analysis. By constructing pseudo-circular reference for re-alignment of RNA-seq reads and employing sophisticated statistical models to correct RNase R treatment biases, CIRIquant can provide more accurate expression values for circRNAs with significantly reduced false discovery rate. We further develop a one-stop differential expression analysis pipeline implementing two independent measures, which helps unveil the regulation of competitive splicing between circRNAs and their linear counterparts. We apply CIRIquant to RNA-seq datasets of hepatocellular carcinoma, and characterize two important groups of linear-circular switching and circular transcript usage switching events, which demonstrate the promising ability to explore extensive transcriptomic changes in liver tumorigenesis.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.nature.com/articles/s41467-019-13840-9 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-13840-9

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-019-13840-9

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-13840-9