EconPapers    
Economics at your fingertips  
 

MAP3Kinase-dependent SnRK2-kinase activation is required for abscisic acid signal transduction and rapid osmotic stress response

Yohei Takahashi, Jingbo Zhang, Po-Kai Hsu, Paulo H. O. Ceciliato, Li Zhang, Guillaume Dubeaux, Shintaro Munemasa, Chennan Ge, Yunde Zhao, Felix Hauser and Julian I. Schroeder ()
Additional contact information
Yohei Takahashi: University of California San Diego
Jingbo Zhang: University of California San Diego
Po-Kai Hsu: University of California San Diego
Paulo H. O. Ceciliato: University of California San Diego
Li Zhang: University of California San Diego
Guillaume Dubeaux: University of California San Diego
Shintaro Munemasa: Okayama University, Tsushima-Naka
Chennan Ge: University of California San Diego
Yunde Zhao: University of California San Diego
Felix Hauser: University of California San Diego
Julian I. Schroeder: University of California San Diego

Nature Communications, 2020, vol. 11, issue 1, 1-12

Abstract: Abstract Abiotic stresses, including drought and salinity, trigger a complex osmotic-stress and abscisic acid (ABA) signal transduction network. The core ABA signalling components are snf1-related protein kinase2s (SnRK2s), which are activated by ABA-triggered inhibition of type-2C protein-phosphatases (PP2Cs). SnRK2 kinases are also activated by a rapid, largely unknown, ABA-independent osmotic-stress signalling pathway. Here, through a combination of a redundancy-circumventing genetic screen and biochemical analyses, we have identified functionally-redundant MAPKK-kinases (M3Ks) that are necessary for activation of SnRK2 kinases. These M3Ks phosphorylate a specific SnRK2/OST1 site, which is indispensable for ABA-induced reactivation of PP2C-dephosphorylated SnRK2 kinases. ABA-triggered SnRK2 activation, transcription factor phosphorylation and SLAC1 activation require these M3Ks in vitro and in plants. M3K triple knock-out plants show reduced ABA sensitivity and strongly impaired rapid osmotic-stress-induced SnRK2 activation. These findings demonstrate that this M3K clade is required for ABA- and osmotic-stress-activation of SnRK2 kinases, enabling robust ABA and osmotic stress signal transduction.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-019-13875-y Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-13875-y

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-019-13875-y

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-13875-y