Direct asymmetric N-propargylation of indoles and carbazoles catalyzed by lithium SPINOL phosphate
Yingcheng Wang,
Sheng Wang,
Wenyu Shan and
Zhihui Shao ()
Additional contact information
Yingcheng Wang: Yunnan University
Sheng Wang: Yunnan University
Wenyu Shan: Yunnan University
Zhihui Shao: Yunnan University
Nature Communications, 2020, vol. 11, issue 1, 1-10
Abstract:
Abstract Catalytic asymmetric functionalization of the N–H groups of indoles and carbazoles constitutes an important but less developed class of reactions. Herein, we describe a propargylation protocol involving the use of a lithium SPINOL phosphate as the chiral catalyst and our recently developed C-alkynyl N,O-acetals as propargylating reagents. The direct asymmetric N-propargylation of indoles and carbazoles provides hitherto inaccessible N-functionalized products. Notably, the efficiency of the system allows reactions to be run at a very low catalyst loading (as low as 0.1 mol%). Mechanistic information about the titled reaction is also disclosed. This study represents an advance in the direct asymmetric functionalization of the N–H bonds of indoles and carbazoles, and additionally expands on the application of chiral alkali metal salts of chiral phosphoric acids in asymmetric catalysis.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/s41467-019-13886-9 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-13886-9
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-019-13886-9
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().