Golgi organization is regulated by proteasomal degradation
Avital Eisenberg-Lerner,
Ron Benyair,
Noa Hizkiahou,
Neta Nudel,
Roey Maor,
Matthias P. Kramer,
Merav D. Shmueli,
Inbal Zigdon,
Marina Cherniavsky Lev,
Adi Ulman,
Jitka Yehudith Sagiv,
Molly Dayan,
Bareket Dassa,
Mercedes Rosenwald,
Idit Shachar,
Jie Li,
Yanzhuang Wang,
Nili Dezorella,
Suman Khan,
Ziv Porat,
Eyal Shimoni,
Ori Avinoam and
Yifat Merbl ()
Additional contact information
Avital Eisenberg-Lerner: Weizmann Institute of Science
Ron Benyair: Weizmann Institute of Science
Noa Hizkiahou: Weizmann Institute of Science
Neta Nudel: Weizmann Institute of Science
Roey Maor: Weizmann Institute of Science
Matthias P. Kramer: Weizmann Institute of Science
Merav D. Shmueli: Weizmann Institute of Science
Inbal Zigdon: Weizmann Institute of Science
Marina Cherniavsky Lev: Weizmann Institute of Science
Adi Ulman: Weizmann Institute of Science
Jitka Yehudith Sagiv: Weizmann Institute of Science
Molly Dayan: Weizmann Institute of Science
Bareket Dassa: Weizmann Institute of Science
Mercedes Rosenwald: Weizmann Institute of Science
Idit Shachar: Weizmann Institute of Science
Jie Li: University of Michigan
Yanzhuang Wang: University of Michigan
Nili Dezorella: Weizmann Institute of Science
Suman Khan: Weizmann Institute of Science
Ziv Porat: Weizmann Institute of Science
Eyal Shimoni: Weizmann Institute of Science
Ori Avinoam: Weizmann Institute of Science
Yifat Merbl: Weizmann Institute of Science
Nature Communications, 2020, vol. 11, issue 1, 1-14
Abstract:
Abstract The Golgi is a dynamic organelle whose correct assembly is crucial for cellular homeostasis. Perturbations in Golgi structure are associated with numerous disorders from neurodegeneration to cancer. However, whether and how dispersal of the Golgi apparatus is actively regulated under stress, and the consequences of Golgi dispersal, remain unknown. Here we demonstrate that 26S proteasomes are associated with the cytosolic surface of Golgi membranes to facilitate Golgi Apparatus-Related Degradation (GARD) and degradation of GM130 in response to Golgi stress. The degradation of GM130 is dependent on p97/VCP and 26S proteasomes, and required for Golgi dispersal. Finally, we show that perturbation of Golgi homeostasis induces cell death of multiple myeloma in vitro and in vivo, offering a therapeutic strategy for this malignancy. Taken together, this work reveals a mechanism of Golgi-localized proteasomal degradation, providing a functional link between proteostasis control and Golgi architecture, which may be critical in various secretion-related pathologies.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/s41467-019-14038-9 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-14038-9
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-019-14038-9
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().