Uncovering and quantifying the subduction zone sulfur cycle from the slab perspective
Ji-Lei Li (),
Esther M. Schwarzenbach,
Timm John (),
Jay J. Ague,
Fang Huang,
Jun Gao (),
Reiner Klemd,
Martin J. Whitehouse and
Xin-Shui Wang
Additional contact information
Ji-Lei Li: Chinese Academy of Sciences
Esther M. Schwarzenbach: Freie Universität Berlin
Timm John: Freie Universität Berlin
Jay J. Ague: Yale University
Fang Huang: Rensselaer Polytechnic Institute
Jun Gao: Chinese Academy of Sciences
Reiner Klemd: Universität Erlangen–Nürnberg
Martin J. Whitehouse: Swedish Museum of Natural History
Xin-Shui Wang: Chinese Academy of Sciences
Nature Communications, 2020, vol. 11, issue 1, 1-12
Abstract:
Abstract Sulfur belongs among H2O, CO2, and Cl as one of the key volatiles in Earth’s chemical cycles. High oxygen fugacity, sulfur concentration, and δ34S values in volcanic arc rocks have been attributed to significant sulfate addition by slab fluids. However, sulfur speciation, flux, and isotope composition in slab-dehydrated fluids remain unclear. Here, we use high-pressure rocks and enclosed veins to provide direct constraints on subduction zone sulfur recycling for a typical oceanic lithosphere. Textural and thermodynamic evidence indicates the predominance of reduced sulfur species in slab fluids; those derived from metasediments, altered oceanic crust, and serpentinite have δ34S values of approximately −8‰, −1‰, and +8‰, respectively. Mass-balance calculations demonstrate that 6.4% (up to 20% maximum) of total subducted sulfur is released between 30–230 km depth, and the predominant sulfur loss takes place at 70–100 km with a net δ34S composition of −2.5 ± 3‰. We conclude that modest slab-to-wedge sulfur transport occurs, but that slab-derived fluids provide negligible sulfate to oxidize the sub-arc mantle and cannot deliver 34S-enriched sulfur to produce the positive δ34S signature in arc settings. Most sulfur has negative δ34S and is subducted into the deep mantle, which could cause a long-term increase in the δ34S of Earth surface reservoirs.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-019-14110-4 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-14110-4
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-019-14110-4
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().