Quasiparticle tunnel electroresistance in superconducting junctions
V. Rouco,
R. El Hage,
A. Sander,
J. Grandal,
K. Seurre,
X. Palermo,
J. Briatico,
S. Collin,
J. Trastoy,
K. Bouzehouane,
A. I. Buzdin,
G. Singh,
N. Bergeal,
C. Feuillet-Palma,
J. Lesueur,
C. Leon,
M. Varela,
J. Santamaría and
Javier E. Villegas ()
Additional contact information
V. Rouco: Université Paris-Saclay
R. El Hage: Université Paris-Saclay
A. Sander: Université Paris-Saclay
J. Grandal: Universidad Complutense de Madrid
K. Seurre: Université Paris-Saclay
X. Palermo: Université Paris-Saclay
J. Briatico: Université Paris-Saclay
S. Collin: Université Paris-Saclay
J. Trastoy: Université Paris-Saclay
K. Bouzehouane: Université Paris-Saclay
A. I. Buzdin: Université de Bordeaux
G. Singh: Université PSL, CNRS
N. Bergeal: Université PSL, CNRS
C. Feuillet-Palma: Université PSL, CNRS
J. Lesueur: Université PSL, CNRS
C. Leon: Universidad Complutense de Madrid
M. Varela: Universidad Complutense de Madrid
J. Santamaría: Université Paris-Saclay
Javier E. Villegas: Université Paris-Saclay
Nature Communications, 2020, vol. 11, issue 1, 1-9
Abstract:
Abstract The term tunnel electroresistance (TER) denotes a fast, non-volatile, reversible resistance switching triggered by voltage pulses in ferroelectric tunnel junctions. It is explained by subtle mechanisms connected to the voltage-induced reversal of the ferroelectric polarization. Here we demonstrate that effects functionally indistinguishable from the TER can be produced in a simpler junction scheme—a direct contact between a metal and an oxide—through a different mechanism: a reversible redox reaction that modifies the oxide’s ground-state. This is shown in junctions based on a cuprate superconductor, whose ground-state is sensitive to the oxygen stoichiometry and can be tracked in operando via changes in the conductance spectra. Furthermore, we find that electrochemistry is the governing mechanism even if a ferroelectric is placed between the metal and the oxide. Finally, we extend the concept of electroresistance to the tunnelling of superconducting quasiparticles, for which the switching effects are much stronger than for normal electrons. Besides providing crucial understanding, our results provide a basis for non-volatile Josephson memory devices.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-020-14379-w Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14379-w
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-020-14379-w
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().