Ultracompact 3D microfluidics for time-resolved structural biology
Juraj Knoška,
Luigi Adriano,
Salah Awel,
Kenneth R. Beyerlein,
Oleksandr Yefanov,
Dominik Oberthuer,
Gisel E. Peña Murillo,
Nils Roth,
Iosifina Sarrou,
Pablo Villanueva-Perez,
Max O. Wiedorn,
Fabian Wilde,
Saša Bajt,
Henry N. Chapman () and
Michael Heymann ()
Additional contact information
Juraj Knoška: Deutsches Elektronen-Synchrotron DESY
Luigi Adriano: Deutsches Elektronen-Synchrotron
Salah Awel: Deutsches Elektronen-Synchrotron DESY
Kenneth R. Beyerlein: Deutsches Elektronen-Synchrotron DESY
Oleksandr Yefanov: Deutsches Elektronen-Synchrotron DESY
Dominik Oberthuer: Deutsches Elektronen-Synchrotron DESY
Gisel E. Peña Murillo: Deutsches Elektronen-Synchrotron DESY
Nils Roth: Deutsches Elektronen-Synchrotron DESY
Iosifina Sarrou: Deutsches Elektronen-Synchrotron DESY
Pablo Villanueva-Perez: Deutsches Elektronen-Synchrotron DESY
Max O. Wiedorn: Deutsches Elektronen-Synchrotron DESY
Fabian Wilde: Institut für Werkstoffforschung
Saša Bajt: Deutsches Elektronen-Synchrotron
Henry N. Chapman: Deutsches Elektronen-Synchrotron DESY
Michael Heymann: Deutsches Elektronen-Synchrotron DESY
Nature Communications, 2020, vol. 11, issue 1, 1-12
Abstract:
Abstract To advance microfluidic integration, we present the use of two-photon additive manufacturing to fold 2D channel layouts into compact free-form 3D fluidic circuits with nanometer precision. We demonstrate this technique by tailoring microfluidic nozzles and mixers for time-resolved structural biology at X-ray free-electron lasers (XFELs). We achieve submicron jets with speeds exceeding 160 m s−1, which allows for the use of megahertz XFEL repetition rates. By integrating an additional orifice, we implement a low consumption flow-focusing nozzle, which is validated by solving a hemoglobin structure. Also, aberration-free in operando X-ray microtomography is introduced to study efficient equivolumetric millisecond mixing in channels with 3D features integrated into the nozzle. Such devices can be printed in minutes by locally adjusting print resolution during fabrication. This technology has the potential to permit ultracompact devices and performance improvements through 3D flow optimization in all fields of microfluidic engineering.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-020-14434-6 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14434-6
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-020-14434-6
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().