Training deep quantum neural networks
Kerstin Beer (),
Dmytro Bondarenko,
Terry Farrelly,
Tobias J. Osborne,
Robert Salzmann,
Daniel Scheiermann and
Ramona Wolf
Additional contact information
Kerstin Beer: Institut für Theoretische Physik, Leibniz Universität Hannover
Dmytro Bondarenko: Institut für Theoretische Physik, Leibniz Universität Hannover
Terry Farrelly: Institut für Theoretische Physik, Leibniz Universität Hannover
Tobias J. Osborne: Institut für Theoretische Physik, Leibniz Universität Hannover
Robert Salzmann: Institut für Theoretische Physik, Leibniz Universität Hannover
Daniel Scheiermann: Institut für Theoretische Physik, Leibniz Universität Hannover
Ramona Wolf: Institut für Theoretische Physik, Leibniz Universität Hannover
Nature Communications, 2020, vol. 11, issue 1, 1-6
Abstract:
Abstract Neural networks enjoy widespread success in both research and industry and, with the advent of quantum technology, it is a crucial challenge to design quantum neural networks for fully quantum learning tasks. Here we propose a truly quantum analogue of classical neurons, which form quantum feedforward neural networks capable of universal quantum computation. We describe the efficient training of these networks using the fidelity as a cost function, providing both classical and efficient quantum implementations. Our method allows for fast optimisation with reduced memory requirements: the number of qudits required scales with only the width, allowing deep-network optimisation. We benchmark our proposal for the quantum task of learning an unknown unitary and find remarkable generalisation behaviour and a striking robustness to noisy training data.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
https://www.nature.com/articles/s41467-020-14454-2 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14454-2
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-020-14454-2
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().