EconPapers    
Economics at your fingertips  
 

Finely tuned eye movements enhance visual acuity

Janis Intoy and Michele Rucci ()
Additional contact information
Janis Intoy: Boston University
Michele Rucci: University of Rochester

Nature Communications, 2020, vol. 11, issue 1, 1-11

Abstract: Abstract High visual acuity is essential for many tasks, from recognizing distant friends to driving a car. While much is known about how the eye’s optics and anatomy contribute to spatial resolution, possible influences from eye movements are rarely considered. Yet humans incessantly move their eyes, and it has long been suggested that oculomotor activity enhances fine pattern vision. Here we examine the role of eye movements in the most common assessment of visual acuity, the Snellen eye chart. By precisely localizing gaze and actively controlling retinal stimulation, we show that fixational behavior improves acuity by more than 0.15 logMAR, at least 2 lines of the Snellen chart. This improvement is achieved by adapting both microsaccades and ocular drifts to precisely position the image on the retina and adjust its motion. These findings show that humans finely tune their fixational eye movements so that they greatly contribute to normal visual acuity.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.nature.com/articles/s41467-020-14616-2 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14616-2

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-020-14616-2

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14616-2