An andesitic source for Jack Hills zircon supports onset of plate tectonics in the Hadean
Simon Turner (),
Simon Wilde,
Gerhard Wörner,
Bruce Schaefer and
Yi-Jen Lai
Additional contact information
Simon Turner: Macquarie University
Simon Wilde: Curtin University
Gerhard Wörner: Abteilung Geochemie, Geowissenschaftliches Zentrum Göttingen (GZG)
Bruce Schaefer: Macquarie University
Yi-Jen Lai: Macquarie University
Nature Communications, 2020, vol. 11, issue 1, 1-5
Abstract:
Abstract The composition and origin of Earth’s early crust remains hotly debated. Here we use partition coefficients to invert the trace element composition of 4.3–3.3 Gyr Jack Hills zircons to calculate the composition of the melts from which they crystallised. Using this approach, the average SiO2 content of these melts was 59 ± 6 wt. % with Th/Nb, Dy/Yb and Sr/Y ratios of 2.7 ± 1.9, 0.9 ± 0.2 and 1.6 ± 0.7, respectively. Such features strongly indicate that the protolith for the Jack Hills zircons was not an intra-plate mafic rock, nor a TTG (tondjhemite-tonalite-granodiorite) or a Sudbury-like impact melt. Instead, the inferred equilibrium melts are much more similar to andesites formed in modern subduction settings. We find no evidence for any secular variation between 4.3 and 3.3 Gyr implying little change in the composition or tectonic affinity of the Earth’s early crust from the Hadean to Mesoarchaean.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.nature.com/articles/s41467-020-14857-1 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14857-1
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-020-14857-1
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().