Massive and massless charge carriers in an epitaxially strained alkali metal quantum well on graphene
Martin Hell (),
Niels Ehlen (),
Giovanni Marini,
Yannic Falke,
Boris V. Senkovskiy,
Charlotte Herbig,
Christian Teichert,
Wouter Jolie,
Thomas Michely,
Jose Avila,
Giovanni Di Santo,
Diego M. de la Torre,
Luca Petaccia,
Gianni Profeta and
Alexander Grüneis ()
Additional contact information
Martin Hell: II. Physikalisches Institut, Universität zu Köln
Niels Ehlen: II. Physikalisches Institut, Universität zu Köln
Giovanni Marini: University of L’Aquila
Yannic Falke: II. Physikalisches Institut, Universität zu Köln
Boris V. Senkovskiy: II. Physikalisches Institut, Universität zu Köln
Charlotte Herbig: II. Physikalisches Institut, Universität zu Köln
Christian Teichert: II. Physikalisches Institut, Universität zu Köln
Wouter Jolie: II. Physikalisches Institut, Universität zu Köln
Thomas Michely: II. Physikalisches Institut, Universität zu Köln
Jose Avila: ANTARES Beamline, Synchrotron SOLEIL & Universite Paris-Saclay, L’ Orme des Merisiers
Giovanni Di Santo: Elettra Sincrotrone Trieste
Diego M. de la Torre: II. Physikalisches Institut, Universität zu Köln
Luca Petaccia: Elettra Sincrotrone Trieste
Gianni Profeta: University of L’Aquila
Alexander Grüneis: II. Physikalisches Institut, Universität zu Köln
Nature Communications, 2020, vol. 11, issue 1, 1-11
Abstract:
Abstract We show that Cs intercalated bilayer graphene acts as a substrate for the growth of a strained Cs film hosting quantum well states with high electronic quality. The Cs film grows in an fcc phase with a substantially reduced lattice constant of 4.9 Å corresponding to a compressive strain of 11% compared to bulk Cs. We investigate its electronic structure using angle-resolved photoemission spectroscopy and show the coexistence of massless Dirac and massive Schrödinger charge carriers in two dimensions. Analysis of the electronic self-energy of the massive charge carriers reveals the crystallographic direction in which a two-dimensional Fermi gas is realized. Our work introduces the growth of strained metal quantum wells on intercalated Dirac matter.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-020-15130-1 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15130-1
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-020-15130-1
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().