EconPapers    
Economics at your fingertips  
 

Mapping anthropogenic mineral generation in China and its implications for a circular economy

Xianlai Zeng, Saleem H. Ali, Jinping Tian and Jinhui Li ()
Additional contact information
Xianlai Zeng: Tsinghua University
Saleem H. Ali: University of Delaware
Jinping Tian: Tsinghua University
Jinhui Li: Tsinghua University

Nature Communications, 2020, vol. 11, issue 1, 1-9

Abstract: Abstract Anthropogenic mineral is absorbing wide concern in the context of circular economy, but its generation mechanism and quantity from product to waste remain unclear. Here we consider three product groups, 30 products, and use the revised Weibull lifespan model to map the generation of anthropogenic mineral and 23 types of the capsulated materials by targeting their evolution from 2010 to 2050. Total weight of anthropogenic mineral on average in China reached 39 Mt in 2010, but it will double in 2022 and quadruple in 2045. Stocks of precious metals and rare earths will increase faster than most base materials. The total economic potential in yearly-generated anthropogenic mineral is anticipated to grow markedly from 100 billion US$ in 2020 to 400 billion US$ in 2050. Furthermore, anthropogenic mineral of around 20 materials will be capable to meet projected consumption of three product groups by 2050.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
https://www.nature.com/articles/s41467-020-15246-4 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15246-4

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-020-15246-4

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15246-4