Imaging grain microstructure in a model ceramic energy material with optically generated coherent acoustic phonons
Yuzhou Wang,
David H. Hurley (),
Zilong Hua,
Thomas Pezeril,
Samuel Raetz,
Vitalyi E. Gusev,
Vincent Tournat and
Marat Khafizov ()
Additional contact information
Yuzhou Wang: Department of Mechanical and Aerospace Engineering, The Ohio State University
David H. Hurley: Idaho National Laboratory
Zilong Hua: Idaho National Laboratory
Thomas Pezeril: Institut Molécules et Matériaux du Mans, UMR-CNRS 6283, Le Mans Université
Samuel Raetz: Laboratoire d’Acoustique de l’Université du Mans, LAUM - UMR 6613 CNRS, Le Mans Université, Avenue Olivier Messiaen
Vitalyi E. Gusev: Laboratoire d’Acoustique de l’Université du Mans, LAUM - UMR 6613 CNRS, Le Mans Université, Avenue Olivier Messiaen
Vincent Tournat: Laboratoire d’Acoustique de l’Université du Mans, LAUM - UMR 6613 CNRS, Le Mans Université, Avenue Olivier Messiaen
Marat Khafizov: Department of Mechanical and Aerospace Engineering, The Ohio State University
Nature Communications, 2020, vol. 11, issue 1, 1-8
Abstract:
Abstract Characterization of microstructure, chemistry and function of energy materials remains a challenge for instrumentation science. This active area of research is making considerable strides with methodologies that employ bright X-rays, electron microscopy, and optical spectroscopy. However, further development of instruments capable of multimodal measurements, is necessary to reveal complex microstructure evolution in realistic environments. In this regard, laser-based instruments have a unique advantage as multiple methodologies are easily combined into a single instrument. A pump-probe method that uses optically generated acoustic phonons is expanding standard optical characterization by providing depth resolved information. Here we report on an extension of this method to image grain microstructure in ceria. Rich information regarding the orientation of individual crystallites is obtained by noting how the polarization of the probe beam influences the detected signal amplitude. When paired with other optical microscopies, this methodology will provide new perspectives for characterization of ceramic materials.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-020-15360-3 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15360-3
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-020-15360-3
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().