Real-space imaging of confined magnetic skyrmion tubes
M. T. Birch,
D. Cortés-Ortuño,
L. A. Turnbull,
M. N. Wilson,
F. Groß,
N. Träger,
A. Laurenson,
N. Bukin,
S. H. Moody,
M. Weigand,
G. Schütz,
H. Popescu,
R. Fan,
P. Steadman,
J. A. T. Verezhak,
G. Balakrishnan,
J. C. Loudon,
A. C. Twitchett-Harrison,
O. Hovorka,
H. Fangohr,
F. Y. Ogrin,
J. Gräfe and
P. D. Hatton ()
Additional contact information
M. T. Birch: Durham University
D. Cortés-Ortuño: University of Southampton
L. A. Turnbull: Durham University
M. N. Wilson: Durham University
F. Groß: Max Planck Institute for Intelligent Systems
N. Träger: Max Planck Institute for Intelligent Systems
A. Laurenson: University of Exeter
N. Bukin: University of Exeter
S. H. Moody: Durham University
M. Weigand: Max Planck Institute for Intelligent Systems
G. Schütz: Max Planck Institute for Intelligent Systems
H. Popescu: Synchrotron SOLEIL
R. Fan: Diamond Light Source
P. Steadman: Diamond Light Source
J. A. T. Verezhak: University of Warwick
G. Balakrishnan: University of Warwick
J. C. Loudon: University of Cambridge
A. C. Twitchett-Harrison: University of Cambridge
O. Hovorka: University of Southampton
H. Fangohr: University of Southampton
F. Y. Ogrin: University of Exeter
J. Gräfe: Max Planck Institute for Intelligent Systems
P. D. Hatton: Durham University
Nature Communications, 2020, vol. 11, issue 1, 1-8
Abstract:
Abstract Magnetic skyrmions are topologically nontrivial particles with a potential application as information elements in future spintronic device architectures. While they are commonly portrayed as two dimensional objects, in reality magnetic skyrmions are thought to exist as elongated, tube-like objects extending through the thickness of the host material. The study of this skyrmion tube state (SkT) is vital for furthering the understanding of skyrmion formation and dynamics for future applications. However, direct experimental imaging of skyrmion tubes has yet to be reported. Here, we demonstrate the real-space observation of skyrmion tubes in a lamella of FeGe using resonant magnetic x-ray imaging and comparative micromagnetic simulations, confirming their extended structure. The formation of these structures at the edge of the sample highlights the importance of confinement and edge effects in the stabilisation of the SkT state, opening the door to further investigation into this unexplored dimension of the skyrmion spin texture.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-020-15474-8 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15474-8
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-020-15474-8
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().