EconPapers    
Economics at your fingertips  
 

Faster Atlantic currents drive poleward expansion of temperate phytoplankton in the Arctic Ocean

L. Oziel (), A. Baudena, M. Ardyna, P. Massicotte, A. Randelhoff, J.-B. Sallée, R. B. Ingvaldsen, E. Devred and M. Babin
Additional contact information
L. Oziel: Ocean and Ecosystem Sciences Division, Bedford Institute of Oceanography, Fisheries and Oceans Canada
A. Baudena: Sorbonne Université, LOCEAN-IPSL, CNRS/IRD/MNHN
M. Ardyna: Sorbonne Université & CNRS, Laboratoire d’Océanographie de Villefranche-sur-Mer (LOV)
P. Massicotte: Takuvik International Research Laboratory, Université Laval (Canada) - CNRS (France), Département de biologie et Québec-Océan, Université Laval
A. Randelhoff: Takuvik International Research Laboratory, Université Laval (Canada) - CNRS (France), Département de biologie et Québec-Océan, Université Laval
J.-B. Sallée: Sorbonne Université, LOCEAN-IPSL, CNRS/IRD/MNHN
R. B. Ingvaldsen: Institute of Marine Research
E. Devred: Ocean and Ecosystem Sciences Division, Bedford Institute of Oceanography, Fisheries and Oceans Canada
M. Babin: Takuvik International Research Laboratory, Université Laval (Canada) - CNRS (France), Département de biologie et Québec-Océan, Université Laval

Nature Communications, 2020, vol. 11, issue 1, 1-8

Abstract: Abstract The Arctic marine biome, shrinking with increasing temperature and receding sea-ice cover, is tightly connected to lower latitudes through the North Atlantic. By flowing northward through the European Arctic Corridor (the main Arctic gateway where 80% of in- and outflow takes place), the North Atlantic Waters transport most of the ocean heat, but also nutrients and planktonic organisms toward the Arctic Ocean. Using satellite-derived altimetry observations, we reveal an increase, up to two-fold, in North Atlantic current surface velocities over the last 24 years. More importantly, we show evidence that the North Atlantic current and its variability shape the spatial distribution of the coccolithophore Emiliania huxleyi (Ehux), a tracer for temperate ecosystems. We further demonstrate that bio-advection, rather than water temperature as previously assumed, is a major mechanism responsible for the recent poleward intrusions of southern species like Ehux. Our findings confirm the biological and physical “Atlantification” of the Arctic Ocean with potential alterations of the Arctic marine food web and biogeochemical cycles.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/s41467-020-15485-5 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15485-5

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-020-15485-5

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15485-5