Data-driven analysis and forecasting of highway traffic dynamics
A. M. Avila () and
I. Mezić ()
Additional contact information
A. M. Avila: University of California Santa Barbara
I. Mezić: University of California Santa Barbara
Nature Communications, 2020, vol. 11, issue 1, 1-16
Abstract:
Abstract The unpredictable elements involved in a vehicular traffic system, like human interaction and weather, lead to a very complicated, high-dimensional, nonlinear dynamical system. Therefore, it is difficult to develop a mathematical or artificial intelligence model that describes the time evolution of traffic systems. All the while, the ever-increasing demands on transportation systems has left traffic agencies in dire need of a robust method for analyzing and forecasting traffic. Here we demonstrate how the Koopman mode decomposition can offer a model-free, data-driven approach for analyzing and forecasting traffic dynamics. By obtaining a decomposition of data sets collected by the Federal Highway Administration and the California Department of Transportation, we are able to reconstruct observed data, distinguish any growing or decaying patterns, and obtain a hierarchy of previously identified and never before identified spatiotemporal patterns. Furthermore, it is demonstrated how this methodology can be utilized to forecast highway network conditions.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.nature.com/articles/s41467-020-15582-5 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15582-5
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-020-15582-5
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().