EconPapers    
Economics at your fingertips  
 

Oceanic crust recycling controlled by weakening at slab edges

Jessica Munch (), Taras Gerya and Kosuke Ueda
Additional contact information
Jessica Munch: Department of Earth Sciences, Institute of Geophysics, ETH Zürich
Taras Gerya: Department of Earth Sciences, Institute of Geophysics, ETH Zürich
Kosuke Ueda: Department of Earth Sciences, Institute of Geophysics, ETH Zürich

Nature Communications, 2020, vol. 11, issue 1, 1-6

Abstract: Abstract Retreating subduction zones such as the Lesser Antilles, Gibraltar and Scotia have been migrating towards the Atlantic Ocean by cutting their way through the oceanic crust. This spontaneously retreating subduction is enabled by the development of faults at the edges of the slab, but the physical mechanisms controlling fault propagation and direction remain unknown. Here, using 3D numerical subduction models we show that oceanic lithosphere recycling is mainly controlled by the intensity of strain-induced weakening of fractures forming at the edges of the slab. Intense strain-induced weakening causes predominantly brittle fault propagation and slab narrowing until detachment. Without weakening, preponderantly ductile slab edge propagation occurs, which causes slab widening. This rheological control is not affected by the proximity of non-weakened passive continental margins. Natural examples suggest that slab edges follow convergent paths that could be controlled by fractures weakening due to deep water penetration into the oceanic lithosphere.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-020-15750-7 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15750-7

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-020-15750-7

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15750-7