Molecular mechanism of light-driven sodium pumping
Kirill Kovalev,
Roman Astashkin,
Ivan Gushchin,
Philipp Orekhov,
Dmytro Volkov,
Egor Zinovev,
Egor Marin,
Maksim Rulev,
Alexey Alekseev,
Antoine Royant,
Philippe Carpentier,
Svetlana Vaganova,
Dmitrii Zabelskii,
Christian Baeken,
Ilya Sergeev,
Taras Balandin,
Gleb Bourenkov,
Xavier Carpena,
Roeland Boer,
Nina Maliar,
Valentin Borshchevskiy,
Georg Büldt,
Ernst Bamberg and
Valentin Gordeliy ()
Additional contact information
Kirill Kovalev: Université Grenoble Alpes, CEA, CNRS
Roman Astashkin: Université Grenoble Alpes, CEA, CNRS
Ivan Gushchin: Moscow Institute of Physics and Technology
Philipp Orekhov: Moscow Institute of Physics and Technology
Dmytro Volkov: Forschungszentrum Jülich GmbH
Egor Zinovev: Forschungszentrum Jülich GmbH
Egor Marin: Moscow Institute of Physics and Technology
Maksim Rulev: Forschungszentrum Jülich GmbH
Alexey Alekseev: Forschungszentrum Jülich GmbH
Antoine Royant: Université Grenoble Alpes, CEA, CNRS
Philippe Carpentier: European Synchrotron Radiation Facility Grenoble
Svetlana Vaganova: Forschungszentrum Jülich GmbH
Dmitrii Zabelskii: Forschungszentrum Jülich GmbH
Christian Baeken: Forschungszentrum Jülich GmbH
Ilya Sergeev: Moscow Institute of Physics and Technology
Taras Balandin: Forschungszentrum Jülich GmbH
Gleb Bourenkov: Hamburg unit c/o DESY
Xavier Carpena: ALBA synchrotron (CELLS)
Roeland Boer: ALBA synchrotron (CELLS)
Nina Maliar: Moscow Institute of Physics and Technology
Valentin Borshchevskiy: Forschungszentrum Jülich GmbH
Georg Büldt: Moscow Institute of Physics and Technology
Ernst Bamberg: Moscow Institute of Physics and Technology
Valentin Gordeliy: Université Grenoble Alpes, CEA, CNRS
Nature Communications, 2020, vol. 11, issue 1, 1-11
Abstract:
Abstract The light-driven sodium-pumping rhodopsin KR2 from Krokinobacter eikastus is the only non-proton cation active transporter with demonstrated potential for optogenetics. However, the existing structural data on KR2 correspond exclusively to its ground state, and show no sodium inside the protein, which hampers the understanding of sodium-pumping mechanism. Here we present crystal structure of the O-intermediate of the physiologically relevant pentameric form of KR2 at the resolution of 2.1 Å, revealing a sodium ion near the retinal Schiff base, coordinated by N112 and D116 of the characteristic NDQ triad. We also obtained crystal structures of D116N and H30A variants, conducted metadynamics simulations and measured pumping activities of putative pathway mutants to demonstrate that sodium release likely proceeds alongside Q78 towards the structural sodium ion bound between KR2 protomers. Our findings highlight the importance of pentameric assembly for sodium pump function, and may be used for rational engineering of enhanced optogenetic tools.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-020-16032-y Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16032-y
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-020-16032-y
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().