EconPapers    
Economics at your fingertips  
 

Ultrafast photochemistry produces superbright short-wave infrared dots for low-dose in vivo imaging

Harrisson D. A. Santos, Irene Zabala Gutiérrez, Yingli Shen, José Lifante, Erving Ximendes, Marco Laurenti, Diego Méndez-González, Sonia Melle, Oscar G. Calderón, Enrique López Cabarcos, Nuria Fernández, Irene Chaves-Coira, Daniel Lucena-Agell, Luis Monge, Mark D. Mackenzie, José Marqués-Hueso, Callum M. S. Jones, Carlos Jacinto, Blanca Rosal, Ajoy K. Kar, Jorge Rubio-Retama () and Daniel Jaque ()
Additional contact information
Harrisson D. A. Santos: Universidad Autónoma de Madrid
Irene Zabala Gutiérrez: Universidad Complutense de Madrid
Yingli Shen: Universidad Autónoma de Madrid
José Lifante: Hospital Ramón y Cajal
Erving Ximendes: Universidad Autónoma de Madrid
Marco Laurenti: Universidad Complutense de Madrid
Diego Méndez-González: Universidad Complutense de Madrid
Sonia Melle: Complutense University of Madrid
Oscar G. Calderón: Complutense University of Madrid
Enrique López Cabarcos: Universidad Complutense de Madrid
Nuria Fernández: Hospital Ramón y Cajal
Irene Chaves-Coira: Universidad Autónoma de Madrid
Daniel Lucena-Agell: Consejo Superior de Investigaciones Cientificas CIB–CSIC
Luis Monge: Hospital Ramón y Cajal
Mark D. Mackenzie: Heriot-Watt University
José Marqués-Hueso: Heriot-Watt University
Callum M. S. Jones: Heriot-Watt University
Carlos Jacinto: Instituto de Física, Universidade Federal de Alagoas
Blanca Rosal: Swinburne University of Technology
Ajoy K. Kar: Heriot-Watt University
Jorge Rubio-Retama: Universidad Complutense de Madrid
Daniel Jaque: Universidad Autónoma de Madrid

Nature Communications, 2020, vol. 11, issue 1, 1-12

Abstract: Abstract Optical probes operating in the second near-infrared window (NIR-II, 1,000-1,700 nm), where tissues are highly transparent, have expanded the applicability of fluorescence in the biomedical field. NIR-II fluorescence enables deep-tissue imaging with micrometric resolution in animal models, but is limited by the low brightness of NIR-II probes, which prevents imaging at low excitation intensities and fluorophore concentrations. Here, we present a new generation of probes (Ag2S superdots) derived from chemically synthesized Ag2S dots, on which a protective shell is grown by femtosecond laser irradiation. This shell reduces the structural defects, causing an 80-fold enhancement of the quantum yield. PEGylated Ag2S superdots enable deep-tissue in vivo imaging at low excitation intensities (

Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-020-16333-2 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16333-2

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-020-16333-2

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16333-2