Demonstration of X-ray Thomson scattering as diagnostics for miscibility in warm dense matter
S. Frydrych,
J. Vorberger,
N. J. Hartley,
A. K. Schuster,
K. Ramakrishna,
A. M. Saunders,
T. Driel,
R. W. Falcone,
L. B. Fletcher,
E. Galtier,
E. J. Gamboa,
S. H. Glenzer,
E. Granados,
M. J. MacDonald,
A. J. MacKinnon,
E. E. McBride,
I. Nam,
P. Neumayer,
A. Pak,
K. Voigt,
M. Roth,
P. Sun,
D. O. Gericke,
T. Döppner and
D. Kraus ()
Additional contact information
S. Frydrych: Lawrence Livermore National Laboratory
J. Vorberger: Helmholtz-Zentrum Dresden-Rossendorf
N. J. Hartley: Helmholtz-Zentrum Dresden-Rossendorf
A. K. Schuster: Helmholtz-Zentrum Dresden-Rossendorf
K. Ramakrishna: Helmholtz-Zentrum Dresden-Rossendorf
A. M. Saunders: University of California
T. Driel: SLAC National Accelerator Laboratory
R. W. Falcone: University of California
L. B. Fletcher: SLAC National Accelerator Laboratory
E. Galtier: SLAC National Accelerator Laboratory
E. J. Gamboa: SLAC National Accelerator Laboratory
S. H. Glenzer: SLAC National Accelerator Laboratory
E. Granados: SLAC National Accelerator Laboratory
M. J. MacDonald: SLAC National Accelerator Laboratory
A. J. MacKinnon: Lawrence Livermore National Laboratory
E. E. McBride: SLAC National Accelerator Laboratory
I. Nam: SLAC National Accelerator Laboratory
P. Neumayer: GSI Helmholtzzentrum für Schwerionenforschung
A. Pak: Lawrence Livermore National Laboratory
K. Voigt: Helmholtz-Zentrum Dresden-Rossendorf
M. Roth: Technische Universität Darmstadt
P. Sun: SLAC National Accelerator Laboratory
D. O. Gericke: University of Warwick
T. Döppner: Lawrence Livermore National Laboratory
D. Kraus: Helmholtz-Zentrum Dresden-Rossendorf
Nature Communications, 2020, vol. 11, issue 1, 1-7
Abstract:
Abstract The gas and ice giants in our solar system can be seen as a natural laboratory for the physics of highly compressed matter at temperatures up to thousands of kelvins. In turn, our understanding of their structure and evolution depends critically on our ability to model such matter. One key aspect is the miscibility of the elements in their interiors. Here, we demonstrate the feasibility of X-ray Thomson scattering to quantify the degree of species separation in a 1:1 carbon–hydrogen mixture at a pressure of ~150 GPa and a temperature of ~5000 K. Our measurements provide absolute values of the structure factor that encodes the microscopic arrangement of the particles. From these data, we find a lower limit of $$2{4}_{-7}^{+6}$$ 2 4 − 7 + 6 % of the carbon atoms forming isolated carbon clusters. In principle, this procedure can be employed for investigating the miscibility behaviour of any binary mixture at the high-pressure environment of planetary interiors, in particular, for non-crystalline samples where it is difficult to obtain conclusive results from X-ray diffraction. Moreover, this method will enable unprecedented measurements of mixing/demixing kinetics in dense plasma environments, e.g., induced by chemistry or hydrodynamic instabilities.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-020-16426-y Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16426-y
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-020-16426-y
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().