Anomalous electrical magnetochiral effect by chiral spin-cluster scattering
Hiroaki Ishizuka () and
Naoto Nagaosa
Additional contact information
Hiroaki Ishizuka: The University of Tokyo
Naoto Nagaosa: The University of Tokyo
Nature Communications, 2020, vol. 11, issue 1, 1-6
Abstract:
Abstract The non-collinear spin configurations give rise to many nontrivial phenomena related to the Berry phase. They are often related to the vector and scalar spin chiralities. The scalar spin chirality leads to the topological Hall effect in metals, while the vector spin chirality to the ferroelectricity of spin origin, i.e., multiferroics in insulators. However, the role of the vector spin chirality in conducting systems has not yet been elucidated. Here we show theoretically that the spin correlation with vector spin chirality in chiral magnets scatters electrons asymmetrically, resulting in nonreciprocal transport phenomena, i.e., electrical magnetochiral effect (eMCE). This asymmetric scattering appears in the leading-order scattering term, implying a large nonreciprocity in the charge and spin currents. We find that the temperature and magnetic field dependence of the eMCE reproduces that observed in MnSi. Our results reveal the microscopic mechanism of eMCE and its potential in producing a large nonreciprocal response.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-020-16751-2 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16751-2
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-020-16751-2
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().