Twelve-year clinical trajectories of multimorbidity in a population of older adults
Davide L. Vetrano (),
Albert Roso-Llorach,
Sergio Fernández,
Marina Guisado-Clavero,
Concepción Violán,
Graziano Onder,
Laura Fratiglioni,
Amaia Calderón-Larrañaga and
Alessandra Marengoni
Additional contact information
Davide L. Vetrano: Karolinska Institutet and Stockholm University
Albert Roso-Llorach: Fundació Institut Universitari per a la recerca a l’Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol)
Sergio Fernández: Fundació Institut Universitari per a la recerca a l’Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol)
Marina Guisado-Clavero: Fundació Institut Universitari per a la recerca a l’Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol)
Concepción Violán: Fundació Institut Universitari per a la recerca a l’Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol)
Graziano Onder: Istituto Superiore di Sanità, Via Giano della Bella 34
Laura Fratiglioni: Karolinska Institutet and Stockholm University
Amaia Calderón-Larrañaga: Karolinska Institutet and Stockholm University
Alessandra Marengoni: Karolinska Institutet and Stockholm University
Nature Communications, 2020, vol. 11, issue 1, 1-9
Abstract:
Abstract Multimorbidity—the co-occurrence of multiple diseases—is associated to poor prognosis, but the scarce knowledge of its development over time hampers the effectiveness of clinical interventions. Here we identify multimorbidity clusters, trace their evolution in older adults, and detect the clinical trajectories and mortality of single individuals as they move among clusters over 12 years. By means of a fuzzy c-means cluster algorithm, we group 2931 people ≥60 years in five clinically meaningful multimorbidity clusters (52%). The remaining 48% are part of an unspecific cluster (i.e. none of the diseases are overrepresented), which greatly fuels other clusters at follow-ups. Clusters contribute differentially to the longitudinal development of other clusters and to mortality. We report that multimorbidity clusters and their trajectories may help identifying homogeneous groups of people with similar needs and prognosis, and assisting clinicians and health care systems in the personalization of clinical interventions and preventive strategies.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-020-16780-x Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16780-x
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-020-16780-x
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().