An iron (II) dependent oxygenase performs the last missing step of plant lysine catabolism
Mitchell G. Thompson,
Jacquelyn M. Blake-Hedges,
Jose Henrique Pereira,
John A. Hangasky,
Michael S. Belcher,
William M. Moore,
Jesus F. Barajas,
Pablo Cruz-Morales,
Lorenzo J. Washington,
Robert W. Haushalter,
Christopher B. Eiben,
Yuzhong Liu,
Will Skyrud,
Veronica T. Benites,
Tyler P. Barnum,
Edward E. K. Baidoo,
Henrik V. Scheller,
Michael A. Marletta,
Patrick M. Shih,
Paul D. Adams and
Jay D. Keasling ()
Additional contact information
Mitchell G. Thompson: Joint BioEnergy Institute
Jacquelyn M. Blake-Hedges: Joint BioEnergy Institute
Jose Henrique Pereira: Joint BioEnergy Institute
John A. Hangasky: University of California-Berkeley
Michael S. Belcher: Joint BioEnergy Institute
William M. Moore: Joint BioEnergy Institute
Jesus F. Barajas: Joint BioEnergy Institute
Pablo Cruz-Morales: Joint BioEnergy Institute
Lorenzo J. Washington: Joint BioEnergy Institute
Robert W. Haushalter: Joint BioEnergy Institute
Christopher B. Eiben: Joint BioEnergy Institute
Yuzhong Liu: Joint BioEnergy Institute
Will Skyrud: University of California-Berkeley
Veronica T. Benites: Joint BioEnergy Institute
Tyler P. Barnum: University of California-Berkeley
Edward E. K. Baidoo: Joint BioEnergy Institute
Henrik V. Scheller: Joint BioEnergy Institute
Michael A. Marletta: University of California-Berkeley
Patrick M. Shih: Joint BioEnergy Institute
Paul D. Adams: Joint BioEnergy Institute
Jay D. Keasling: Joint BioEnergy Institute
Nature Communications, 2020, vol. 11, issue 1, 1-10
Abstract:
Abstract Despite intensive study, plant lysine catabolism beyond the 2-oxoadipate (2OA) intermediate remains unvalidated. Recently we described a missing step in the D-lysine catabolism of Pseudomonas putida in which 2OA is converted to D-2-hydroxyglutarate (2HG) via hydroxyglutarate synthase (HglS), a DUF1338 family protein. Here we solve the structure of HglS to 1.1 Å resolution in substrate-free form and in complex with 2OA. We propose a successive decarboxylation and intramolecular hydroxylation mechanism forming 2HG in a Fe(II)- and O2-dependent manner. Specificity is mediated by a single arginine, highly conserved across most DUF1338 proteins. An Arabidopsis thaliana HglS homolog coexpresses with known lysine catabolism enzymes, and mutants show phenotypes consistent with disrupted lysine catabolism. Structural and biochemical analysis of Oryza sativa homolog FLO7 reveals identical activity to HglS despite low sequence identity. Our results suggest DUF1338-containing enzymes catalyze the same biochemical reaction, exerting the same physiological function across bacteria and eukaryotes.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-020-16815-3 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16815-3
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-020-16815-3
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().