EconPapers    
Economics at your fingertips  
 

Femtosecond exciton dynamics in WSe2 optical waveguides

Aaron J. Sternbach (), Simone Latini, Sanghoon Chae, Hannes Hübener, Umberto Giovannini, Yinming Shao, Lin Xiong, Zhiyuan Sun, Norman Shi, Peter Kissin, Guang-Xin Ni, Daniel Rhodes, Brian Kim, Nanfang Yu, Andrew J. Millis, Michael M. Fogler, Peter J. Schuck, Michal Lipson, X.-Y. Zhu, James Hone, Richard D. Averitt, Angel Rubio and D. N. Basov
Additional contact information
Aaron J. Sternbach: Columbia University
Simone Latini: Max Planck Institute for the Structure and Dynamics of Matter
Sanghoon Chae: Columbia University
Hannes Hübener: Max Planck Institute for the Structure and Dynamics of Matter
Umberto Giovannini: Max Planck Institute for the Structure and Dynamics of Matter
Yinming Shao: Columbia University
Lin Xiong: Columbia University
Zhiyuan Sun: Columbia University
Norman Shi: Columbia University
Peter Kissin: University of California, San Diego
Guang-Xin Ni: Columbia University
Daniel Rhodes: Columbia University
Brian Kim: Columbia University
Nanfang Yu: Columbia University
Andrew J. Millis: Columbia University
Michael M. Fogler: University of California, San Diego
Peter J. Schuck: Columbia University
Michal Lipson: Columbia University
X.-Y. Zhu: Columbia University
James Hone: Columbia University
Richard D. Averitt: University of California, San Diego
Angel Rubio: Max Planck Institute for the Structure and Dynamics of Matter
D. N. Basov: Columbia University

Nature Communications, 2020, vol. 11, issue 1, 1-6

Abstract: Abstract Van-der Waals (vdW) atomically layered crystals can act as optical waveguides over a broad range of the electromagnetic spectrum ranging from Terahertz to visible. Unlike common Si-based waveguides, vdW semiconductors host strong excitonic resonances that may be controlled using non-thermal stimuli including electrostatic gating and photoexcitation. Here, we utilize waveguide modes to examine photo-induced changes of excitons in the prototypical vdW semiconductor, WSe2, prompted by femtosecond light pulses. Using time-resolved scanning near-field optical microscopy we visualize the electric field profiles of waveguide modes in real space and time and extract the temporal evolution of the optical constants following femtosecond photoexcitation. By monitoring the phase velocity of the waveguide modes, we detect incoherent A-exciton bleaching along with a coherent optical Stark shift in WSe2.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-020-17335-w Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17335-w

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-020-17335-w

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17335-w