An active mechanical Willis meta-layer with asymmetric polarizabilities
Yangyang Chen,
Xiaopeng Li,
Gengkai Hu,
Michael R. Haberman and
Guoliang Huang ()
Additional contact information
Yangyang Chen: University of Missouri
Xiaopeng Li: University of Missouri
Gengkai Hu: School of Aerospace Engineering, Beijing Institute of Technology
Michael R. Haberman: University of Texas at Austin
Guoliang Huang: University of Missouri
Nature Communications, 2020, vol. 11, issue 1, 1-8
Abstract:
Abstract Willis materials exhibit macroscopic cross-coupling between particle velocity and stress as well as momentum and strain. However, Willis coupling coefficients designed so far are intrinsically coupled, which inhibits their full implementation in structural dynamic applications. This work presents a means to eliminate these limitations by introducing an active scatterer in a mechanical meta-layer that exploits piezoelectric sensor–actuator pairs controlled by digital circuits. We experimentally demonstrate abilities of the Willis meta-layer, in beams and plates, for independently engineering transmission and reflection coefficients of flexural waves in both amplitude and phase and nonreciprocal wave propagations. The meta-layer is described by a flexural wave polarizability tensor, which captures independent higher-order symmetric-to-symmetric and symmetric-to-antisymmetric couplings. The active meta-layer is adaptive in real time for reconfigurable broadband operation thanks to its programmability. This work sheds a new light on unsurpassed control of elastic waves, ranging from vibration protections to ultrasonic sensing and evaluation of engineering structures.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/s41467-020-17529-2 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17529-2
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-020-17529-2
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().