EconPapers    
Economics at your fingertips  
 

T-square resistivity without Umklapp scattering in dilute metallic Bi2O2Se

Jialu Wang, Jing Wu, Tao Wang, Zhuokai Xu, Jifeng Wu, Wanghua Hu, Zhi Ren, Shi Liu, Kamran Behnia and Xiao Lin ()
Additional contact information
Jialu Wang: Westlake University
Jing Wu: Westlake University
Tao Wang: Westlake University
Zhuokai Xu: Westlake University
Jifeng Wu: Westlake University
Wanghua Hu: Westlake University
Zhi Ren: Westlake University
Shi Liu: Westlake University
Kamran Behnia: PSL Research University
Xiao Lin: Westlake University

Nature Communications, 2020, vol. 11, issue 1, 1-8

Abstract: Abstract Fermi liquids (FLs) display a quadratic temperature (T) dependent resistivity. This can be caused by electron-electron (e-e) scattering in presence of inter-band or Umklapp scattering. However, dilute metallic SrTiO3 was found to display T2 resistivity in absence of either of the two mechanisms. The presence of soft phonons as possible scattering centers raised the suspicion that T2 resistivity is not due to e-e scattering. Here, we present the case of Bi2O2Se, a layered semiconductor with hard phonons, which becomes a dilute metal with a small single-component Fermi surface upon doping. It displays T2 resistivity well below the degeneracy temperature in absence of Umklapp and inter-band scattering. We observe a universal scaling between the T2 resistivity prefactor (A) and the Fermi energy (EF), an extension of the Kadowaki-Woods plot to dilute metals. Our results imply the absence of a satisfactory understanding of the ubiquity of e-e T2 resistivity in FLs.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-020-17692-6 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17692-6

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-020-17692-6

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17692-6