Understanding the diversity of the metal-organic framework ecosystem
Seyed Mohamad Moosavi,
Aditya Nandy,
Kevin Maik Jablonka,
Daniele Ongari,
Jon Paul Janet,
Peter G. Boyd,
Yongjin Lee,
Berend Smit () and
Heather J. Kulik ()
Additional contact information
Seyed Mohamad Moosavi: Institut des Sciences et Ingénierie Chimiques, École, Polytechnique Fédérale de Lausanne (EPFL)
Aditya Nandy: Massachusetts Institute of Technology
Kevin Maik Jablonka: Institut des Sciences et Ingénierie Chimiques, École, Polytechnique Fédérale de Lausanne (EPFL)
Daniele Ongari: Institut des Sciences et Ingénierie Chimiques, École, Polytechnique Fédérale de Lausanne (EPFL)
Jon Paul Janet: Massachusetts Institute of Technology
Peter G. Boyd: Institut des Sciences et Ingénierie Chimiques, École, Polytechnique Fédérale de Lausanne (EPFL)
Yongjin Lee: ShanghaiTech University
Berend Smit: Institut des Sciences et Ingénierie Chimiques, École, Polytechnique Fédérale de Lausanne (EPFL)
Heather J. Kulik: Massachusetts Institute of Technology
Nature Communications, 2020, vol. 11, issue 1, 1-10
Abstract:
Abstract Millions of distinct metal-organic frameworks (MOFs) can be made by combining metal nodes and organic linkers. At present, over 90,000 MOFs have been synthesized and over 500,000 predicted. This raises the question whether a new experimental or predicted structure adds new information. For MOF chemists, the chemical design space is a combination of pore geometry, metal nodes, organic linkers, and functional groups, but at present we do not have a formalism to quantify optimal coverage of chemical design space. In this work, we develop a machine learning method to quantify similarities of MOFs to analyse their chemical diversity. This diversity analysis identifies biases in the databases, and we show that such bias can lead to incorrect conclusions. The developed formalism in this study provides a simple and practical guideline to see whether new structures will have the potential for new insights, or constitute a relatively small variation of existing structures.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.nature.com/articles/s41467-020-17755-8 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17755-8
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-020-17755-8
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().