EconPapers    
Economics at your fingertips  
 

Fast electrical modulation of strong near-field interactions between erbium emitters and graphene

Daniel Cano, Alban Ferrier, Karuppasamy Soundarapandian, Antoine Reserbat-Plantey, Marion Scarafagio, Alexandre Tallaire, Antoine Seyeux, Philippe Marcus, Hugues de Riedmatten, Philippe Goldner, Frank H. L. Koppens () and Klaas-Jan Tielrooij ()
Additional contact information
Daniel Cano: ICFO – Institut de Ciències Fotòniques
Alban Ferrier: Université PSL, Chimie ParisTech, CNRS
Karuppasamy Soundarapandian: ICFO – Institut de Ciències Fotòniques
Antoine Reserbat-Plantey: ICFO – Institut de Ciències Fotòniques
Marion Scarafagio: Université PSL, Chimie ParisTech, CNRS
Alexandre Tallaire: Université PSL, Chimie ParisTech, CNRS
Antoine Seyeux: Université PSL, Chimie ParisTech, CNRS
Philippe Marcus: Université PSL, Chimie ParisTech, CNRS
Hugues de Riedmatten: ICFO – Institut de Ciències Fotòniques
Philippe Goldner: Université PSL, Chimie ParisTech, CNRS
Frank H. L. Koppens: ICFO – Institut de Ciències Fotòniques
Klaas-Jan Tielrooij: Catalan Institute of Nanoscience and Nanotechnology (ICN2), BIST and CSIC

Nature Communications, 2020, vol. 11, issue 1, 1-8

Abstract: Abstract Combining the quantum optical properties of single-photon emitters with the strong near-field interactions available in nanophotonic and plasmonic systems is a powerful way of creating quantum manipulation and metrological functionalities. The ability to actively and dynamically modulate emitter-environment interactions is of particular interest in this regard. While thermal, mechanical and optical modulation have been demonstrated, electrical modulation has remained an outstanding challenge. Here we realize fast, all-electrical modulation of the near-field interactions between a nanolayer of erbium emitters and graphene, by in-situ tuning the Fermi energy of graphene. We demonstrate strong interactions with a >1000-fold increased decay rate for ~25% of the emitters, and electrically modulate these interactions with frequencies up to 300 kHz – orders of magnitude faster than the emitter’s radiative decay (~100 Hz). This constitutes an enabling platform for integrated quantum technologies, opening routes to quantum entanglement generation by collective plasmon emission or photon emission with controlled waveform.

Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-020-17899-7 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17899-7

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-020-17899-7

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17899-7