Predicting the frequencies of drug side effects
Diego Galeano,
Shantao Li,
Mark Gerstein and
Alberto Paccanaro ()
Additional contact information
Diego Galeano: Royal Holloway, University of London
Shantao Li: Stanford University
Mark Gerstein: Yale University
Alberto Paccanaro: Royal Holloway, University of London
Nature Communications, 2020, vol. 11, issue 1, 1-14
Abstract:
Abstract A central issue in drug risk-benefit assessment is identifying frequencies of side effects in humans. Currently, frequencies are experimentally determined in randomised controlled clinical trials. We present a machine learning framework for computationally predicting frequencies of drug side effects. Our matrix decomposition algorithm learns latent signatures of drugs and side effects that are both reproducible and biologically interpretable. We show the usefulness of our approach on 759 structurally and therapeutically diverse drugs and 994 side effects from all human physiological systems. Our approach can be applied to any drug for which a small number of side effect frequencies have been identified, in order to predict the frequencies of further, yet unidentified, side effects. We show that our model is informative of the biology underlying drug activity: individual components of the drug signatures are related to the distinct anatomical categories of the drugs and to the specific drug routes of administration.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-020-18305-y Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18305-y
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-020-18305-y
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().