EconPapers    
Economics at your fingertips  
 

Amplification of enantiomeric excess by dynamic inversion of enantiomers in deracemization of Au38 clusters

Yanan Wang, Belén Nieto-Ortega and Thomas Bürgi ()
Additional contact information
Yanan Wang: University of Geneva
Belén Nieto-Ortega: University of Geneva
Thomas Bürgi: University of Geneva

Nature Communications, 2020, vol. 11, issue 1, 1-7

Abstract: Abstract Symmetry breaking and amplification processes have likely played a fundamental role in the development of homochirality on earth. Such processes have not been much studied for inorganic matter at the nanoscale. Here, we show that the balance between left- and right-handed intrinsically chiral metal clusters can be broken by adsorbing a small amount of a chiral molecule in its ligand shell. We studied the amplification of enantiomeric excess of the Au38(2-PET)24 cluster (2-PET = 2-phenylethylthiolate). By exchanging a small fraction of the achiral 2-PET ligand by chiral R-1,1′-binaphthyl-2,2′-dithiol (R-BINAS), a mixture of species is obtained composed of anticlockwise (A) and clockwise (C) versions of Au38(2-PET)24 and Au38(2-PET)22(R-BINAS)1. At 70 °C, the system evolves towards the anticlockwise clusters at the expense of the clockwise antipode. It is shown that the interplay between the diastereospecific ligand exchange, which introduces selectivity but does not change the A/C ratio, and the fast racemization of the Au38(2-PET)24 is at the origin of this observation.

Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-020-18357-0 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18357-0

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-020-18357-0

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18357-0