Fabrication of a novel magnetic topological heterostructure and temperature evolution of its massive Dirac cone
T. Hirahara (),
M. M. Otrokov,
T. T. Sasaki,
K. Sumida,
Y. Tomohiro,
S. Kusaka,
Y. Okuyama,
S. Ichinokura,
M. Kobayashi,
Y. Takeda,
K. Amemiya,
T. Shirasawa,
S. Ideta,
K. Miyamoto,
K. Tanaka,
S. Kuroda,
T. Okuda,
K. Hono,
S. V. Eremeev and
E. V. Chulkov
Additional contact information
T. Hirahara: Tokyo Institute of Technology
M. M. Otrokov: CFM-MPC, Centro Mixto CSIC-UPV/EHU
T. T. Sasaki: National Institute for Materials Science
K. Sumida: Tokyo Institute of Technology
Y. Tomohiro: University of Tsukuba
S. Kusaka: Tokyo Institute of Technology
Y. Okuyama: Tokyo Institute of Technology
S. Ichinokura: Tokyo Institute of Technology
M. Kobayashi: University of Tokyo
Y. Takeda: Japan Atomic Energy Agency
K. Amemiya: High Energy Accelerator Research Organization
T. Shirasawa: National Institute of Advanced Industrial Science and Technology
S. Ideta: Institute for Molecular Science
K. Miyamoto: Hiroshima University
K. Tanaka: Institute for Molecular Science
S. Kuroda: University of Tsukuba
T. Okuda: Hiroshima University
K. Hono: National Institute for Materials Science
S. V. Eremeev: Institute of Strength Physics and Materials Science
E. V. Chulkov: CFM-MPC, Centro Mixto CSIC-UPV/EHU
Nature Communications, 2020, vol. 11, issue 1, 1-8
Abstract:
Abstract Materials that possess nontrivial topology and magnetism is known to exhibit exotic quantum phenomena such as the quantum anomalous Hall effect. Here, we fabricate a novel magnetic topological heterostructure Mn4Bi2Te7/Bi2Te3 where multiple magnetic layers are inserted into the topmost quintuple layer of the original topological insulator Bi2Te3. A massive Dirac cone (DC) with a gap of 40–75 meV at 16 K is observed. By tracing the temperature evolution, this gap is shown to gradually decrease with increasing temperature and a blunt transition from a massive to a massless DC occurs around 200–250 K. Structural analysis shows that the samples also contain MnBi2Te4/Bi2Te3. Magnetic measurements show that there are two distinct Mn components in the system that corresponds to the two heterostructures; MnBi2Te4/Bi2Te3 is paramagnetic at 6 K while Mn4Bi2Te7/Bi2Te3 is ferromagnetic with a negative hysteresis (critical temperature ~20 K). This novel heterostructure is potentially important for future device applications.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-020-18645-9 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18645-9
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-020-18645-9
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().