Thioglycoligase derived from fungal GH3 β-xylosidase is a multi-glycoligase with broad acceptor tolerance
Manuel Nieto-Domínguez (),
Beatriz Fernández de Toro,
Laura I. Eugenio,
Andrés G. Santana,
Lara Bejarano-Muñoz,
Zach Armstrong,
Juan Antonio Méndez-Líter,
Juan Luis Asensio,
Alicia Prieto,
Stephen G. Withers,
Francisco Javier Cañada and
María Jesús Martínez ()
Additional contact information
Manuel Nieto-Domínguez: Centro de Investigaciones Biológicas Margarita Salas (CSIC)
Beatriz Fernández de Toro: Centro de Investigaciones Biológicas Margarita Salas (CSIC)
Laura I. Eugenio: Centro de Investigaciones Biológicas Margarita Salas (CSIC)
Andrés G. Santana: Glycochemistry and Molecular recognition group, Instituto de Química Orgánica General (CSIC)
Lara Bejarano-Muñoz: Centro de Investigaciones Biológicas Margarita Salas (CSIC)
Zach Armstrong: Centre for High-Throughput Biology, University of British Columbia
Juan Antonio Méndez-Líter: Centro de Investigaciones Biológicas Margarita Salas (CSIC)
Juan Luis Asensio: Glycochemistry and Molecular recognition group, Instituto de Química Orgánica General (CSIC)
Alicia Prieto: Centro de Investigaciones Biológicas Margarita Salas (CSIC)
Stephen G. Withers: Centre for High-Throughput Biology, University of British Columbia
Francisco Javier Cañada: Centro de Investigaciones Biológicas Margarita Salas (CSIC)
María Jesús Martínez: Centro de Investigaciones Biológicas Margarita Salas (CSIC)
Nature Communications, 2020, vol. 11, issue 1, 1-16
Abstract:
Abstract The synthesis of customized glycoconjugates constitutes a major goal for biocatalysis. To this end, engineered glycosidases have received great attention and, among them, thioglycoligases have proved useful to connect carbohydrates to non-sugar acceptors. However, hitherto the scope of these biocatalysts was considered limited to strong nucleophilic acceptors. Based on the particularities of the GH3 glycosidase family active site, we hypothesized that converting a suitable member into a thioglycoligase could boost the acceptor range. Herein we show the engineering of an acidophilic fungal β-xylosidase into a thioglycoligase with broad acceptor promiscuity. The mutant enzyme displays the ability to form O-, N-, S- and Se- glycosides together with sugar esters and phosphoesters with conversion yields from moderate to high. Analyses also indicate that the pKa of the target compound was the main factor to determine its suitability as glycosylation acceptor. These results expand on the glycoconjugate portfolio attainable through biocatalysis.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-020-18667-3 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18667-3
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-020-18667-3
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().