EconPapers    
Economics at your fingertips  
 

Crop switching reduces agricultural losses from climate change in the United States by half under RCP 8.5

James Rising () and Naresh Devineni
Additional contact information
James Rising: London School of Economics
Naresh Devineni: City University of New York (City College)

Nature Communications, 2020, vol. 11, issue 1, 1-7

Abstract: Abstract A key strategy for agriculture to adapt to climate change is by switching crops and relocating crop production. We develop an approach to estimate the economic potential of crop reallocation using a Bayesian hierarchical model of yields. We apply the model to six crops in the United States, and show that it outperforms traditional empirical models under cross-validation. The fitted model parameters provide evidence of considerable existing climate adaptation across counties. If crop locations are held constant in the future, total agriculture profits for the six crops will drop by 31% for the temperature patterns of 2070 under RCP 8.5. When crop lands are reallocated to avoid yield decreases and take advantage of yield increases, half of these losses are avoided (16% loss), but 57% of counties are allocated crops different from those currently planted. Our results provide a framework for identifying crop adaptation opportunities, but suggest limits to their potential.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
https://www.nature.com/articles/s41467-020-18725-w Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18725-w

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-020-18725-w

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18725-w