Capturing human categorization of natural images by combining deep networks and cognitive models
Ruairidh M. Battleday (),
Joshua C. Peterson () and
Thomas L. Griffiths
Additional contact information
Ruairidh M. Battleday: Princeton University
Joshua C. Peterson: Princeton University
Thomas L. Griffiths: Princeton University
Nature Communications, 2020, vol. 11, issue 1, 1-14
Abstract:
Abstract Human categorization is one of the most important and successful targets of cognitive modeling, with decades of model development and assessment using simple, low-dimensional artificial stimuli. However, it remains unclear how these findings relate to categorization in more natural settings, involving complex, high-dimensional stimuli. Here, we take a step towards addressing this question by modeling human categorization over a large behavioral dataset, comprising more than 500,000 judgments over 10,000 natural images from ten object categories. We apply a range of machine learning methods to generate candidate representations for these images, and show that combining rich image representations with flexible cognitive models captures human decisions best. We also find that in the high-dimensional representational spaces these methods generate, simple prototype models can perform comparably to the more complex memory-based exemplar models dominant in laboratory settings.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/s41467-020-18946-z Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18946-z
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-020-18946-z
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().