EconPapers    
Economics at your fingertips  
 

Myelination of parvalbumin interneurons shapes the function of cortical sensory inhibitory circuits

Najate Benamer (), Marie Vidal, Maddalena Balia and María Cecilia Angulo ()
Additional contact information
Najate Benamer: Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, “Team Interactions between neurons and oligodendroglia in myelination and myelin repair”
Marie Vidal: Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, “Team Interactions between neurons and oligodendroglia in myelination and myelin repair”
Maddalena Balia: Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, “Team Interactions between neurons and oligodendroglia in myelination and myelin repair”
María Cecilia Angulo: Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, “Team Interactions between neurons and oligodendroglia in myelination and myelin repair”

Nature Communications, 2020, vol. 11, issue 1, 1-14

Abstract: Abstract Myelination of projection neurons by oligodendrocytes is key to optimize action potential conduction over long distances. However, a large fraction of myelin enwraps the axons of parvalbumin-positive fast-spiking interneurons (FSI), exclusively involved in local cortical circuits. Whether FSI myelination contributes to the fine‐tuning of intracortical networks is unknown. Here we demonstrate that FSI myelination is required for the establishment and maintenance of the powerful FSI-mediated feedforward inhibition of cortical sensory circuits. The disruption of GABAergic synaptic signaling of oligodendrocyte precursor cells prior to myelination onset resulted in severe FSI myelination defects characterized by longer internodes and nodes, aberrant myelination of branch points and proximal axon malformation. Consequently, high-frequency FSI discharges as well as FSI-dependent postsynaptic latencies and strengths of excitatory neurons were reduced. These dysfunctions generated a strong excitation-inhibition imbalance that correlated with whisker-dependent texture discrimination impairments. FSI myelination is therefore critical for the function of mature cortical inhibitory circuits.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.nature.com/articles/s41467-020-18984-7 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18984-7

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-020-18984-7

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18984-7