EconPapers    
Economics at your fingertips  
 

One-dimensional confinement and width-dependent bandgap formation in epitaxial graphene nanoribbons

Hrag Karakachian (), T. T. Nhung Nguyen, Johannes Aprojanz, Alexei A. Zakharov, Rositsa Yakimova, Philipp Rosenzweig, Craig M. Polley, Thiagarajan Balasubramanian, Christoph Tegenkamp, Stephen R. Power and Ulrich Starke
Additional contact information
Hrag Karakachian: Max-Planck-Institut für Festkörperforschung
T. T. Nhung Nguyen: Institut für Physik, Technische Universität Chemnitz
Johannes Aprojanz: Institut für Physik, Technische Universität Chemnitz
Alexei A. Zakharov: Lund University
Rositsa Yakimova: IFM, Linköping University
Philipp Rosenzweig: Max-Planck-Institut für Festkörperforschung
Craig M. Polley: Lund University
Thiagarajan Balasubramanian: Lund University
Christoph Tegenkamp: Institut für Physik, Technische Universität Chemnitz
Stephen R. Power: Trinity College Dublin
Ulrich Starke: Max-Planck-Institut für Festkörperforschung

Nature Communications, 2020, vol. 11, issue 1, 1-8

Abstract: Abstract The ability to define an off state in logic electronics is the key ingredient that is impossible to fulfill using a conventional pristine graphene layer, due to the absence of an electronic bandgap. For years, this property has been the missing element for incorporating graphene into next-generation field effect transistors. In this work, we grow high-quality armchair graphene nanoribbons on the sidewalls of 6H-SiC mesa structures. Angle-resolved photoelectron spectroscopy (ARPES) and scanning tunneling spectroscopy measurements reveal the development of a width-dependent semiconducting gap driven by quantum confinement effects. Furthermore, ARPES demonstrates an ideal one-dimensional electronic behavior that is realized in a graphene-based environment, consisting of well-resolved subbands, dispersing and non-dispersing along and across the ribbons respectively. Our experimental findings, coupled with theoretical tight-binding calculations, set the grounds for a deeper exploration of quantum confinement phenomena and may open intriguing avenues for new low-power electronics.

Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-020-19051-x Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19051-x

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-020-19051-x

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19051-x